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Pesticide risk reduction through effective regulation,
education and engagement with farmers

e Can farmers, supported by effective
regulation, education, monitoring and
feedback limit pesticide risks over time?
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IPM and pesticide stewardship partnerships to
limit pesticides in Oregon surface waters
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Pesticide Stewardship Partnerships (PSPs)

Key Steps in Oregon Partnership Projects

Monitor for current use pesticides in
surface waters from drift & runoff

Identify streams with elevated pesticide
concentrations or high # of detections

|

Collaborate to implement voluntary
management practices

|

Follow-up monitoring to determine
Improvements over time




Real-time monitoring of pest epidemics, coupled to pest
phenology models, to focus on field-by-field decision making
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PSP Results Hood River, Oregon
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Pesticide risk reduction (PRR)

* Can farmers, supported by effective
regulation, education, monitoring and
feedback, limit pesticide risks to aquatic and
terrestrial wildlife over time?

* Can farmers limit the area of pesticide impact
over time, by adopting both IPM and PRR,
supported by research and education?
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Impact area for all pesticides used in Arizona lettuce, calculated using PRiIME
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Avian Acute 1991
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Avian Acute 2011
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Pesticide risk reduction (PRR)

e Can farmers, supported by effective
regulation, education, monitoring and
feedback, limit pesticide risks to aquatic and
terrestrial wildlife over time?

e Can farmers limit the area of pesticide impact
over time, by adopting both IPM, supported
by research and education?

* |s impact area a relevant focus for risk
assessment that acknowledges recovery?



Mechanisms underlying adverse pesticide impacts at

different scales
MICRO SCALE
f (exposure, susceptibility)
MESO SCALE

f (chemical persistence, life history, habitat requirements, dispersal
rate, diet range)

MACRO SCALE

f (spatio-temporal patterns of chemical use, life history,
trophic interactions, habitat characteristics and layout)

(Actual scaling, organism and habitat dependent)

Jepson, P.C. (1989) “The temporal and spatial dynamics of pesticide side-effects on non-target
invertebrates”. In: Pesticides and non-target invertebrates (Ed. P.C. Jepson), pp 95-128. Intercept,
Wimbourne.

Jepson, P.C. (2007) Ecotoxicology and IPM, In: Kogan, M., Jepson, P.C. (Eds) Perspectives in

Ecological Theory and Integrated Pest Management, pp 522-551 Cambridge University Press, UK.
570pp



What have we learned, regulators in the room?

Having a quantifiable outcome is important, so that
you know if you are achieving your goal

Engaging with farmers removes uncertainties in the
risk assessment process associated with climate, soil,
crops, habitats, biota at risk, exposed habitats,
scaling of the system, between year variability
Success is built upon monitoring and measurement,
and analysis of current status and trends in the real

world

Is there a lesson here for the implementation of risk
assessment processes that acknowledge recovery?



FIFRA/FFDCA Statutory Scheme

Multiple interconnected pi programs in recognition that no single,
independent action or stakeholder can ensure adequate protection.
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How much of this are you seeking to cover, and can
suites of models be designed that support the part of
the process that you are seeking to influence?

Are you seeking to model recovery in all potential
landscapes?

Are you seeking to identify areas and uses where there is a
high risk of recovery failing to occur?

If such locations are identified, what are you going to do
about it? Rely on models and eliminate uses in specific
locations, or identify locations and develop partnerships
that mitigate or eliminate the risk??



Why Is recovery a useful thing to
estimate in a regulatory context?

Allows measurement of the duration of an ecological
effect

Places emphasis upon population level effect, rather
than individual impacts, in the period immediately
following exposure

Acknowledges need to consider surrounding landscape,
and the overall meta-population

Link with adverse secondary impacts, including
resurgence and secondary pest outbreaks, that do not
occur when recovery Is rapid

Failure to recover provides a mechanism that underlies
local extinction or extirpation

Enables appropriate scale to be established for
experiments that attempt to measure ecological risk (i.e.
avoidance of edge effects and between-treatment
Interference)




Definitions of ecological recovery following depletion

or extirpation by pesticides
(Maltby et al. (2001) In: Baird & Burton SETAC Press)

No days affected population growth rate lags behind
unaffected population (Kareiva et al., ‘96)

Time to recover to 80% of control (Jepson &
Thacker, '93)

Time to approach SE of pre-treatment populations
(Jepson & Thacker, "90)

Return of perturbed system to window of natural
variability (Weins, '96)

Time when N., relative to control, reach 90% of pre-
treatment numbers (Sherratt et al., '99)



Do you already have the data that you need?

« Can population recovery times be
predicted as a function of chemical

persistence?

« Can species sensitivity data be used to
describe chemical impacts on large
taxonomic groups”?

« Can chemical fate data be used to predict
the point at which ecological recovery can
begin?



Estimating time (yrs) for soil invertebrates to
initiate recovery following pesticide use

Initial HC5, soil Ecotoxicological | Range ERT
concentration | invertebrates recovery time from research
(mg/kg)
Dimethoate 1.1 0.14 0.15 0.13-0.18
Chlorpyrifos 15.1 0.0017 1.1 0.59-7.7
Carbofuran 6.4 0.036 1.2 0.71-3.8
Benomyl 1.3 0.023 3.8 2.8-5.8

van Straalen N.M. & van Rijn, J.P. (1998)
Rev Environ Contam Toxicol 154: 83-141
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Models can incorporate ERT, and be used as a research tool to explore
many different scenarios for individual taxa



Is it possible to combine SSD and impact area
approaches to identify taxa, crops and agricultural
systems at risk, where the application regime is
known?

Large impact areas, and high risk will impair recovery



Perspective on factors limiting population
recovery/persistence of non-target taxa

« Landscape structure and the displacement of fields and refugia
— Size, shape and quality of refugia
— The presence and quality of dispersal routes
— Spatial configuration of habitat elements

 Development of understanding of the situations where effects (e.g.
local extirpation) will propogate to longer time scales

— E.g., from lowest to highest probability
» Single ‘event’ in a continuous population
* Low frequency/synchrony events in a continuous population
» Single event in a patchy population
* Frequent events in a continuous population
» Single, large scale event in a continuous population
» Multiple events in a patchy population
« Single, large scale event, in a patchy population

Fahrig, L. and K. Freemark. 1995. Landscape-scale effects of toxic events for ecological risk
assessment. Pp. 193-208 in: J. Cairns Jr. and B.R. Niederlehner (eds.). Ecological toxicity testing:
scale, complexity, and relevance. Lewis Publishers.
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Landscape Analysis

— Analyzed all agricultural pesticide
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Pesticide Risk Mitigation Engine
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Landscape Analysis

Average PRIME Field Score for Aquatic Invertebrates
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Landscape Analysis
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Farmers apply suites of pesticides: how do risks of
whole programs compare to risks associated with
individual sprays?



Example dataset: vegetables, June applications, 2010
1,226 applications to vegetables incl: green, wax and
Italian beans, broccoli, corn, peas, zucchini

* PRIME indexes calculated for each application and for
each farm

« Exploring application of PRIME for development of risk
management and mitigation strategies in each commodity,
tailored to individual farms (200 growers)



Frequency distribution of risks within each PRIME index

Independent applications: takes into account frequency of use as well as toxicity
of all materials
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Continued:

MODEL
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Distribution of risks by farm
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Possible to rank commodities, pesticides, farmers associated with higher risks



Distribution of risks by farm
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Programs are highly variable, farm to farm (example for
a very uniform green bean production system in the
Willamette Valley, OR
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Pesticide risk reduction in West Africa
Jepson, P. C.%, Guzy, M.1, Blaustein, K.1, Sow, M.?, Sarr, M.3

lintegrated Plant Protection Center, Oregon State University; 2ENDA,
Dakar, Senegal; 3UN Food and Agriculture Organization, Senegal;
4Department of Environmental and Molecular Toxicology, Oregon State
University




FAO GEF/PRM program in W. Africa
Sustain production, reduce pesticide risks, enable adaptive
management and appropriate technology use
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All sites were discrete production systems with local farm

families that supplied all the labor for production
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Regional risk over all sites in West Africa and all crops

Area of impact = risk score * area over which product applied
(After “Bird Kill Hectares” of Mineau & Whiteside, Environmental Toxicology and Chemistry 25, 1214-1222)

Example: of 1591 ha surveyed, methamidophos impact areas for each
PRIME index from Jepson et al, 2014: Phil. Trans Royal Soc, in press

ke | mciamba
Aquatic algae 0

Aquatic invertebrates 517

Fish chronic 63

Earthworm 431

Small Mammal 466

Avian acute 265

Avian reproductive 160

Bystander inhalation 99
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Conclusions

In order to implement a recovery component to risk assessment:

1.

2.

Quantifiable goals are required, that can be tracked in the real
world — how else will you know if the approach is effective?
Monitoring results can be fed back to farmers, regulators and
other stakeholders

The limitations of any approach that is not based on the
attributes of a specific system must be understood before it is
Implemented in regulatory decision making

The uncertainties associated with agricultural landscapes will
remain high

. The ERT approach for estimating recovery time employs

currently available data, and addresses biodiversity
Research models can explore ranges in actual recovery time,
but are limited at present

. Analysis must consider real pesticide programs, climatic

variation, and patterns of use to isolate high risk cases



