Areawide Diamondback Moth Trapping Network Established in Yuma
In response to the recent outbreaks of Diamondback moth (DBM) , Plutella xylostella in Yuma, we have established a pheromone trap network designed to monitor the activity and movement of adult populations of DBM. PCAs have had difficulty controlling DBM in cabbage, broccoli and cauliflower since October. Wing Traps with DBM pheromone lures have been placed in Roll, Wellton, Dome Valley, Gila Valley and Yuma Valley in locations where Cole crops are presently being grown, or in areas where infestations were known to occur this fall. The data we collect is not intended to indicate field infestations, as trap data is largely a reflection of adult movement. The data may reflect emergence/ activity of adults in adjacent fields with known infestations, or provide an indication that DBM may be moving into fields not previously infested. If nothing else, the data may make PCAs aware of increased pest activity in some areas and encourage intensified scouting in susceptible produce fields. DBM are still active in many fields, and most recently we’ve observed that populations are beginning to spread into direct-seeded crops that were not previously effected by DBM. For this reason, we are tracking moth activity to monitor their activity relative weather conditions and crops sources. We have a historical perspective of DBM activity in Yuma. From 1998-2000, we established a pheromone trap network during the winter and spring in Yuma which included DBM. Not surprisingly during that 2-year trapping period DBM counts never exceed 6 moths/trap/day at any time during the spring season. DBM have historically been a secondary pest, that may cause issues in spring cabbage crops. However, in just the few weeks we’ve been trapping DBM since Dec 20, we’ve had four trap locations where DBM counts have exceeded 10 moths/trap/day and in one location (Co. 9th and Ave F) over 25 moths /day were recorded. These traps were all located in the Yuma Valley, stretching from Co. 21st up to Co. 9th street. We will continue to monitor DBM trap activity throughout the season, as well as trap population activity throughout the summer to determine whether DBM is active when brassica crops are not available. This may give us an indication of the potential for more problems going into next season. From a historical perspective, trap counts during the summer of 1999 in the Yuma Valley occasionally caught DBM moths in traps at low levels (0.2-1.2 moths/trap/night from July-August). We concluded at that time that many of the DBM captured may have come in with transplants, as we were uncertain whether DBM was capable of over summering in the desert in the absence of brassica crops. We hope to gain more insight into the pest’s activity during summer months in Yuma this year by actively trapping throughout the area. For access to DBM trap counts please visit Areawide Diamondback Moth Trapping Network.
Plant viruses cannot penetrate the intact plant cuticle and cellulose cell wall that acts as barrier to infection. The virus overcomes the problem by either avoiding the need to penetrate (example seed transmission) or by using the wound in plants as infection site, or transmission by insects, nematodes or fungi as a vector.
Mechanical transmission involves the introduction of infective virus or viral RNA into the wounds of plants. Viruses such as Tobacco mosaic virus (TMV), Potato virus X are highly stable, and reach high concentration in plants. As you all know TMV can readily contaminate hands, clothings, and implements and can be spread by worker. TMV can even spread mechanically by tobacco smokers as the virus is present in cured tobacco leaves.
Mechanical transmission is of great importance. In field and greenhouse, great amount of caution has to be implemented to not transmit the infection. Field sanitation, tool sanitation is very important to avoid the spread of virus.
However, in experimental world mechanical transmission is a very useful tool to study viruses. Mechanical inoculation of virus to a heathy host plant is done for assays, to produce local lesions, in the propagation to of viruses for purification, in host range study, diagnosis, and to understand the interaction between virus and susceptible cells.
Seed transmission: About 1/7 th of the known plant viruses are transmitted through seeds. Different viruses have different host ranges (the plants that they can infect). Tobacco mosaic virus, Cucumber mosaic virus are some viruses with a very wide host range and they may not be seed transmissible in all plants they infect. Seed transmission plays a huge role in virus epidemiology. Not only they can be a primary source of infection, leading to an epidemic in the field upon conducible environment, seed transmission is an effective way for long distance travel of the virus, thus introducing the virus to new places. You have heard of USDA regulations/restrictions on different crops, from certain foreign countries to avoid introduction of infected seeds/plant materials.
Seed transmission can occur simply by contamination of seeds, as in tomato seeds by Tobacco mosaic virus. This can be readily inactivated by seed treatments.
The second type of seed transmission occurs when the virus is present in the embryo tissue that can happen prior to fertilization or takes place at pollination. Pea seed-borne mosaic virus is a well studied plant virus in this category.
Pollen Transmisison: Some viruses are transmitted from plant to plant via pollen. As in seed transmission, pollen transmission has two mechanisms, gametic infection of embryo and direct infection of mother plant.
Vegetative propagation: An important horticultural practice, and unfortunately a very effective method for perpetuating and spreading viruses. In clonally propagated plants, an infected mother plant which could be asymptomatic could be used to make hundreds and thousands of daughter plants, which will all have the virus. Any vegetative parts such as bulbs, corms, runners, and cutting will be infected.
Grafting: Essentially a form of vegetative propagation, once the organic union has been established and plants (Scion and Stock) function as a single plant. In experimental front, grafting is used as a virus transmission methods, when all other methods fail.
Band-Steam Applicator for Controlling Soilborne Pathogens and Weeds in Lettuce
Steam sterilization of soils is commonly used in plant nurseries and greenhouses for effective control of soilborne pathogens and weed seeds. The technique, however, is highly energy intensive as the entire soil profile is heated. This is too costly and slow to be practical for field scale vegetable production. To reduce energy consumption and cost, use of band-steaming, where steam is applied only in the area where it is needed – in the plant root zone, is proposed. In this method, narrow strips of soil centered on the seed line are treated with steam rather than the whole bed.
Over the course of the last year, we developed a prototype band-steam and co-product applicator that is designed to raise soil temperatures in a band 2” deep by 4” wide to levels sufficient to control soilborne pathogens (140 °F for > 20 minutes) and weed seed (150 °F for > 20 minutes). The device is principally comprised of a 35 BHP steam generator and a co-product applicator mounted on top of a bed shaper (Fig.1). The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper. An exothermic compound can be co-applied via shank injection and/or a banding spray nozzle. The rationale behind co-applying an exothermic compound with steam is that exothermic compounds react and release heat when combined with water, thereby reducing energy requirements and increasing travel speed.
Preliminary testing of the device this spring in Yuma, AZ were very promising. Trial results showed that application of steam alone effectively raised soil temperature in the center of the seed line to levels required for effective pest control (140 °F for more than 20 minutes). Use of the exothermic compound increased soil temperature by about 10 °F. A video of the device in action can be found at the link provided below.
We are currently evaluating the device in field trials with lettuce in Salinas, CA. Target pests in these experiments conducted in collaboration with Steve Fennimore, UC Davis, are soil pathogens which cause Sclerotinia lettuce drop and in-row weeds. Future articles will report the findings of this research.
This fall, we will be replicating these tests in Yuma, AZ and also investigating the effectiveness of band-steam for controlling Fusarium oxysporum f. sp. lactucae which causes Fusarium wilt of lettuce. Heat has been shown to effectively kill Fusarium oxysporum spores and control Fusarium wilt disease. As an example, soil solarization, where clear plastic is placed over crop beds during the summer, raises soil temperatures to 150-155˚F at the soil surface, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
These projects are sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
If you are interested in seeing the machine operate or would like more information, please feel free to contact me.
See the band-steam and co-product applicator in action!
References:
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Sprangletop has become increasingly widespread in Arizona mostly because of its growth habits and tolerance to many commonly used herbicides. It is in the Leptochloa genus which is derived from the Greek words leptos (thin) and chloa (grass). There are more than 150 species of sprangletop worldwide but only three in Arizona and two in Yuma County. The two that are the most common in the low desert are Mexican Sprangletop, which is Leptochloa uninervia and Red Sprangletop, Leptochloa filiformis. A third species, Bearded Sprangletop, Leptochloa fascicularis, is more common at higher elevations of 1500 feet or higher. It is not uncommon to find both Red and Mexican Sprangletop in the same field and it is not hard to distinguish them when they are side by side. Red Sprangletop has a light green leaf blade which is similar in width to watergrass and barnyardgrass. It has very fine hairs and very small and fine branches and spiklets. It also has a long membranous ligule. The name Red refers to the leaf sheath, which is characteristically red, rather than the seed head. Mexican Sprangletop has a thinner leaf blade which is darker green or grayish in color and similar in appearance to common bermudagrass. The seed head is distinctly coarser than that of Red Sprangletop. Side by side, leaf color and size of the seed make it easy to distinguish these two. Both of these grasses are classified as summer annuals, but they grow more like perennials in the low desert. Sprangletop does very well in the hottest part of the summer and typically germinates from seed during the hottest period between July and September. Once established, however, it often survives through the cold winter months. It grows into clumps that often appear to be dead during the winter. New shoots commonly grow from these established crowns the next season. When this occurs, preemergent herbicides such as Trifluralin or Prowl are ineffective. Some Sprangletop plants stay green and grow through the winter. Many of the postemergence, grass specific herbicides that control many grasses are ineffective on Sprangletop. This also has contributed to the spread of these weeds. Sethoxydim (Poast) and Fluazifop (Fusilade) do not control either Red or Mexican sprangletop. Only Clethodim (Select Max, Select, Arrow and others) is the only one of these grass herbicides that is effective and only at the highest labeled rates. Two applications are often necessary to achieve season long control.