Temperatures are still warm and worm pressure remains steady in most growing areas. Here at the Ag Center, beet armyworm pressure is about average for early October, and still troublesome on new stands. Cabbage looper eggs are beginning to now show up. Pheromone trap counts for armyworm and loopers remain below average in most areas. However, diamondback moth larvae are present on broccoli and transplants at the Ag Center. I’ve had several PCA reports of diamondback pressure in transplanted brassica crops in Wellton and Roll, and in the Yuma Valley. Trap catches have begun to increase also. So far, all insecticide products we’ve tested are providing good Lep control and no complaints from the field.
Fortunately for local PCAs, several insecticide alternatives are available that provide excellent residual activity on Lep pests. Perhaps equally important, many of the products have unique modes of action (MOA) that can be alternated throughout the growing season. This is important because the most fundamental way to reduce the risk of insecticide resistance is to eliminate exposure of multiple generations of Leps to the same MOA. By using a different MOA on each subsequent spray application, you can minimize the risk of resistance by Lep larvae to these insecticide compounds. In contrast, repeatedly applying insecticide products with the same MOA for Lep control in the same area will significantly increase the risk of resistance. This is particularly important with the Diamide group of insecticides (IRAC group 28). These products can be applied as both foliar sprays and soil systemic treatments, and currently 7 Diamide products are labeled for use in leafy vegetables - all with the same MOA (Coragen, Durivo, Besiege, Minecto Pro, Verimark, Exirel and Harvanta). To avoid confusion among the Diamides, the IRAC group number (28) is placed on each label, adjacent to the product name. Furthermore, applying a Diamide product (i.e., Coragen/Verimark) to the soil at planting or as a tray drench, and then subsequently applying Diamide foliar sprays (i.e., Harvanta/Besiege) on the same field is not a good idea as it can expose multiple generations of Leps to the same MOA. For example, under ideal weather conditions, one could potentially expose 5-6 generations of BAW or DBM to the same MOA given the residual efficacy of the diamides. That’s not a good way to use these products if you want them to remain effective. Since the Diamides, as well as the other key products currently available (e.g., Radiant, Proclaim, Intrepid, Avaunt, Bts), are critical to effective management of Leps in leafy vegetables, PCAs should consciously avoid the overuse of any of these compounds. The most effective way to delay the onset of resistance by Leps in leafy vegetables is to consider the recommendations provided in the guidelines entitled Insecticide Resistance Management for Beet Armyworm, Cabbage Looper and Diamondback Moth in Desert Produce Crops.
Widely accepted definition of a living organism “A living organism has a cellular structure and is manifest by growth through metabolism, reproduction, and the power of adaptation to the environment through changes that originate internally”. Viruses are not cellular and do not metabolise, but they reproduce and adapt.
A virus is a set of one or more nucleic acid template molecules, normally incased in a protective coats of protein or lipoprotein and is able to organize its own replication but only within a suitable host cells. Record of plant viruses do not go as far as human viruses, but plant viruses have caused considerable loss in agriculture system.
One of the most common virus we see in agriculture system in todays world is Cucumber mosaic virus(CMV). CMV belongs to family Bromoviridae. The genome size of cucumber mosaic virus (see pic) is about 8000 to 9000 nucletotide bases (1 base=1 letter of AGTC). The genome size of Covid19 Coronivirus is about 30,000 bases and the genome size of human DNA is 6.4 billion bases.
CMV has a very wide host range and is transmitted by aphids in nonpersistent manner (stylet borne). This means that the aphids acquire the virus particle in their stylet within seconds of feeding in infected plants, hop on to next plant and start feeding on next plant. The virus is transmitted to the next plant immediately.
Next is incubation period. Viruses cause systemic infection. It can take anywhere from few days to few weeks from initial entry of the virus to symptom exhibition in your plants. The severity of symptoms varies depending on many factors. The age of plant (infection stage), the general plant vigor (health), varietal susceptibility, conducive environment (viruses express better in colder weather than hot weather), a plant that has already been infected with other viruses (preesisting condition) are to name a few.
Attachment – the virus attaches itself to the outside of a new plant cell
Penetration – the protein pushes the nucleic acid strand into the plant cell
Replication – the viruses’ nucleic acid uses the plant cell DNA to make many new nucleic acid strands and protein sheathes
Assembly – the nucleic acid and protein assembly into millions of new virus copies
Release – the viruses leave the cell – at this stage the cell is normally dead and bursts releasing the viruses
Transmission – the viruses move using a vector to new cells to infect.
When you see the symptoms in your plants, the first thing you have to understand is virus infection is systemic. The best you can do to manage the virus is to limit the transmission (flatten the curve). Some viruses need a vector for transmission like insects and nematodes. Some viruses are mechanically transmitted from one infected plant to another. Washing field tools between plants/field whenever possible limits the transmission of virus. Soap, bleach, and disinfectants reduce transmission by protein denaturalization of the virus.
Band-Steam Applicator for Controlling Soilborne Pathogens and Weeds in Lettuce
Steam sterilization of soils is commonly used in plant nurseries and greenhouses for effective control of soilborne pathogens and weed seeds. The technique, however, is highly energy intensive as the entire soil profile is heated. This is too costly and slow to be practical for field scale vegetable production. To reduce energy consumption and cost, use of band-steaming, where steam is applied only in the area where it is needed – in the plant root zone, is proposed. In this method, narrow strips of soil centered on the seed line are treated with steam rather than the whole bed.
Over the course of the last year, we developed a prototype band-steam and co-product applicator that is designed to raise soil temperatures in a band 2” deep by 4” wide to levels sufficient to control soilborne pathogens (140 °F for > 20 minutes) and weed seed (150 °F for > 20 minutes). The device is principally comprised of a 35 BHP steam generator and a co-product applicator mounted on top of a bed shaper (Fig.1). The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper. An exothermic compound can be co-applied via shank injection and/or a banding spray nozzle. The rationale behind co-applying an exothermic compound with steam is that exothermic compounds react and release heat when combined with water, thereby reducing energy requirements and increasing travel speed.
Preliminary testing of the device this spring in Yuma, AZ were very promising. Trial results showed that application of steam alone effectively raised soil temperature in the center of the seed line to levels required for effective pest control (140 °F for more than 20 minutes). Use of the exothermic compound increased soil temperature by about 10 °F. A video of the device in action can be found at the link provided below.
We are currently evaluating the device in field trials with lettuce in Salinas, CA. Target pests in these experiments conducted in collaboration with Steve Fennimore, UC Davis, are soil pathogens which cause Sclerotinia lettuce drop and in-row weeds. Future articles will report the findings of this research.
This fall, we will be replicating these tests in Yuma, AZ and also investigating the effectiveness of band-steam for controlling Fusarium oxysporum f. sp. lactucae which causes Fusarium wilt of lettuce. Heat has been shown to effectively kill Fusarium oxysporum spores and control Fusarium wilt disease. As an example, soil solarization, where clear plastic is placed over crop beds during the summer, raises soil temperatures to 150-155˚F at the soil surface, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
These projects are sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
If you are interested in seeing the machine operate or would like more information, please feel free to contact me.
See the band-steam and co-product applicator in action!
References:
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Sprangletop has become increasingly widespread in Arizona mostly because of its growth habits and tolerance to many commonly used herbicides. It is in the Leptochloa genus which is derived from the Greek words leptos (thin) and chloa (grass). There are more than 150 species of sprangletop worldwide but only three in Arizona and two in Yuma County. The two that are the most common in the low desert are Mexican Sprangletop, which is Leptochloa uninervia and Red Sprangletop, Leptochloa filiformis. A third species, Bearded Sprangletop, Leptochloa fascicularis, is more common at higher elevations of 1500 feet or higher. It is not uncommon to find both Red and Mexican Sprangletop in the same field and it is not hard to distinguish them when they are side by side. Red Sprangletop has a light green leaf blade which is similar in width to watergrass and barnyardgrass. It has very fine hairs and very small and fine branches and spiklets. It also has a long membranous ligule. The name Red refers to the leaf sheath, which is characteristically red, rather than the seed head. Mexican Sprangletop has a thinner leaf blade which is darker green or grayish in color and similar in appearance to common bermudagrass. The seed head is distinctly coarser than that of Red Sprangletop. Side by side, leaf color and size of the seed make it easy to distinguish these two. Both of these grasses are classified as summer annuals, but they grow more like perennials in the low desert. Sprangletop does very well in the hottest part of the summer and typically germinates from seed during the hottest period between July and September. Once established, however, it often survives through the cold winter months. It grows into clumps that often appear to be dead during the winter. New shoots commonly grow from these established crowns the next season. When this occurs, preemergent herbicides such as Trifluralin or Prowl are ineffective. Some Sprangletop plants stay green and grow through the winter. Many of the postemergence, grass specific herbicides that control many grasses are ineffective on Sprangletop. This also has contributed to the spread of these weeds. Sethoxydim (Poast) and Fluazifop (Fusilade) do not control either Red or Mexican sprangletop. Only Clethodim (Select Max, Select, Arrow and others) is the only one of these grass herbicides that is effective and only at the highest labeled rates. Two applications are often necessary to achieve season long control.