Historically, our Areawide Pheromone and Sticky Trap monitoring for insects was terminated around the first of April as the produce season ended. Beginning 4 years ago however, we continued our Areawide Trapping Network throughout the summer to collect trapping data from all 15 areawide trap locations year-round. So why is this additional trapping data useful? For several reasons:
1) Understanding the activity of some of our key pests when produce is not grown during the summer may give us an indication of what to expect as the fall produce season begins. This may be particularly helpful for predicting moth flights and whitefly flights in August-September coinciding with early transplanting and direct seeded crops. Another example is keeping track of corn earworm which can unexpectedly show up near the beginning of fall harvests.
2) Trapping for pests during the summer has shown us that 2 of our more important produce pests are not caught in traps during the summer. We presume this is due to the absence of brassica crops and weeds for diamondback moth, and high daytime/nighttime temperatures lethal to aphids. The fact that trap catches resume in the fall supports our conclusion that these pests are absent in the summer, only to reenter the desert via winds and/or transplants in the fall. And finally,
3) It gives me something to do in the summer other than write reports and papers.
So, visit the Areawide Summer Trap Network if you’re curious what our key pests are up to.
Beginning of the season we have found few lettuce infected with bacterial soft rot. Though it rarely takes down the whole field, the symptom are not so pleasant. Bacterial soft rot in lettuce can occur in the field as well as post harvest.
Sadly, we found a lot more field and plants infected with the disease late season. Ample rain (for Yuma) and intermittent warm weather we got has facilitated the development of diseases. Some fields have been infected as high as 30%.
It is caused by several types of bacteria, but primarily subspecies and pathovars of Erwinia caro-tovora and E. chrysanthemi. Other bacterial species that cause soft rot include Pseudomonas cichorii, P. marginalis, and P. viridiflava. They have a wide host range host range and includes genera from nearly all plant families
In lettuce fields, the symptoms are observed close to the harvest time. The tissue, mostly around inside the head of head lettuce softens and becomes mushy or watery. Slimy masses of bacteria and cellular debris frequently ooze out from cracks in the tissues. Decaying tissue, which may be opaque, white, cream-colored, gray, brown, or black frequently gives off a characteristically putrid odor. The odor is caused by secondary invading bacteria
that are growing in the decomposing tissues.
The bacteria overwinter in infected fleshy tissues in storage, in the field, garden or greenhouse, in the soil (especially in the rhizosphere around the roots of many plants), and on contaminated tools, equipment, containers, and in certain insects. The bacteria enter primarily through wounds made during planting, cultivating, harvesting, grading, and packing and through freezing injuries, insect and hail wounds, growth cracks, and sunscald. They may
also follow other disease-producing organisms. Uninjured tissues may become infected when the humidity approaches 100 percent or when free moisture is present. Rains, poorly drained or waterlogged soils, and warm temperatures favor infection in the field, as does high humidity in storage or transit.
The bacteria multiply rapidly by dividing in half every 20 to 60 minutes under ideal conditions at
temperatures between 65° and 95° (18° and 35°C). Minimum temperatures for development is between 35° and 46°F (2° and 6°C); and maximum between 95° and 105°F (35° and 41°C.
The bacteria are spread by direct contact, hands, tools and farm machinery, insects, running or splashing water, contaminated, water in washing vats, clothing, and decayed bits of tissue.
Management
Promptly and carefully destroy infected plants. Maintain well aerated field, avoid close planting and overhead irrigation.
To minimize post harvest losses, avoid mechanical injusry after harvest, packing and shipping. Do notpack produce when wet. Store and ship produce at temperatures near 4°C (39°F).
Band-Steam Applicator for Controlling Soilborne Pathogens and Weeds in Lettuce
Steam sterilization of soils is commonly used in plant nurseries and greenhouses for effective control of soilborne pathogens and weed seeds. The technique, however, is highly energy intensive as the entire soil profile is heated. This is too costly and slow to be practical for field scale vegetable production. To reduce energy consumption and cost, use of band-steaming, where steam is applied only in the area where it is needed – in the plant root zone, is proposed. In this method, narrow strips of soil centered on the seed line are treated with steam rather than the whole bed.
Over the course of the last year, we developed a prototype band-steam and co-product applicator that is designed to raise soil temperatures in a band 2” deep by 4” wide to levels sufficient to control soilborne pathogens (140 °F for > 20 minutes) and weed seed (150 °F for > 20 minutes). The device is principally comprised of a 35 BHP steam generator and a co-product applicator mounted on top of a bed shaper (Fig.1). The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper. An exothermic compound can be co-applied via shank injection and/or a banding spray nozzle. The rationale behind co-applying an exothermic compound with steam is that exothermic compounds react and release heat when combined with water, thereby reducing energy requirements and increasing travel speed.
Preliminary testing of the device this spring in Yuma, AZ were very promising. Trial results showed that application of steam alone effectively raised soil temperature in the center of the seed line to levels required for effective pest control (140 °F for more than 20 minutes). Use of the exothermic compound increased soil temperature by about 10 °F. A video of the device in action can be found at the link provided below.
We are currently evaluating the device in field trials with lettuce in Salinas, CA. Target pests in these experiments conducted in collaboration with Steve Fennimore, UC Davis, are soil pathogens which cause Sclerotinia lettuce drop and in-row weeds. Future articles will report the findings of this research.
This fall, we will be replicating these tests in Yuma, AZ and also investigating the effectiveness of band-steam for controlling Fusarium oxysporum f. sp. lactucae which causes Fusarium wilt of lettuce. Heat has been shown to effectively kill Fusarium oxysporum spores and control Fusarium wilt disease. As an example, soil solarization, where clear plastic is placed over crop beds during the summer, raises soil temperatures to 150-155˚F at the soil surface, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
These projects are sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
If you are interested in seeing the machine operate or would like more information, please feel free to contact me.
See the band-steam and co-product applicator in action!
References:
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Sprangletop has become increasingly widespread in Arizona mostly because of its growth habits and tolerance to many commonly used herbicides. It is in the Leptochloa genus which is derived from the Greek words leptos (thin) and chloa (grass). There are more than 150 species of sprangletop worldwide but only three in Arizona and two in Yuma County. The two that are the most common in the low desert are Mexican Sprangletop, which is Leptochloa uninervia and Red Sprangletop, Leptochloa filiformis. A third species, Bearded Sprangletop, Leptochloa fascicularis, is more common at higher elevations of 1500 feet or higher. It is not uncommon to find both Red and Mexican Sprangletop in the same field and it is not hard to distinguish them when they are side by side. Red Sprangletop has a light green leaf blade which is similar in width to watergrass and barnyardgrass. It has very fine hairs and very small and fine branches and spiklets. It also has a long membranous ligule. The name Red refers to the leaf sheath, which is characteristically red, rather than the seed head. Mexican Sprangletop has a thinner leaf blade which is darker green or grayish in color and similar in appearance to common bermudagrass. The seed head is distinctly coarser than that of Red Sprangletop. Side by side, leaf color and size of the seed make it easy to distinguish these two. Both of these grasses are classified as summer annuals, but they grow more like perennials in the low desert. Sprangletop does very well in the hottest part of the summer and typically germinates from seed during the hottest period between July and September. Once established, however, it often survives through the cold winter months. It grows into clumps that often appear to be dead during the winter. New shoots commonly grow from these established crowns the next season. When this occurs, preemergent herbicides such as Trifluralin or Prowl are ineffective. Some Sprangletop plants stay green and grow through the winter. Many of the postemergence, grass specific herbicides that control many grasses are ineffective on Sprangletop. This also has contributed to the spread of these weeds. Sethoxydim (Poast) and Fluazifop (Fusilade) do not control either Red or Mexican sprangletop. Only Clethodim (Select Max, Select, Arrow and others) is the only one of these grass herbicides that is effective and only at the highest labeled rates. Two applications are often necessary to achieve season long control.