Help Us Document the Heavy Insect Pressure in Desert Lettuce This Season
With the produce season winding down rapidly, now is a good time to reflect on pest activity and insecticide usage you experienced this season in desert lettuce. The 2023 Lettuce Crop Losses Workshop will be held live, in-person Tuesday, May 9th at the Yuma Agricultural Center from 11:30 until 3:00 pm (see agenda below). Get there early as lunch will be provided. The meeting has been approved for 2.5 CA/AZ CEUs. Participants will be asked to complete two short surveys to document pest pressure and control tactics used on lettuce this season. This workshop has been invaluable to our Vegetable IPM Team over the past 18 years because it allows us to develop accurate “real world” data on crop losses and pesticide usage which is important to the assessment of IPM programs in Arizona. It’s also valuable to PCAs, as it can translate their efforts into economic terms for their growers and confirms their value to the lettuce industry by showing the importance of key insect pests and their cost-effective management in desert lettuce production.
It's no secret, the insect activity this spring was exceptional. Lettuce aphids and green peach aphids were abundant most of the spring, and thrips numbers were down until late in the season. As I’ve reported previously, I think this may be one of the heaviest aphid years I’ve experienced in the desert in a long time. Earlier Lettuce Insect Losses surveys from theses workshops estimated that over a 18-year period, PCA made on average 1.5 sprays on lettuce for aphids (ranging from 1.0 to 2.5 sprays). For the complete report see: Insect Losses and Management on Desert Lettuce: An 18-year Summary. Based on reports from PCAs this spring, it is likely that considerably more sprays were applied this spring for green peach aphid, and perhaps fewer for thrips. Also, a wide variety of insecticides products were reportedly used by PCA’s, some with mixed results. You can review the historical database of insecticides used for aphids and other insects here: Insecticide Usage on Desert Lettuce, 2021-2022The bottom line: from a historical perspective, it would be quite useful to document insect pressure and sprays applied this year compared to previous years. In addition to the reporting, Marco Pena will be presenting the latest results of his herbicide trials and areawide weed survey. Finally, I will be providing the latest efficacy trial results on aphids, thrips, worms, and whiteflies. So, we hope you can make it to the workshop and participate in this important process.
Lettuce Crops Losses Workshop
May 9, 2023 11:30-3:00 pm
Yuma Agricultural Center Conference Room
Agenda
11:30-12:00 pm Lunch (It will be yummy)
12:00- 12:30 pm Impact of IPM on Lettuce Insect Losses John Palumbo
12:30-1:00 pm Individual Completion of LIL Questionnaires Attendees
1:00-1:30 pm Historical Results of Insect Losses /Insecticide Usage John Palumbo
1:30-2:00 pm Weed Management Research Update Marco Pena
2:00-3:00 pm Insect Management Research Update John Palumbo
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Variety: Deluxe (HMX2595) was seeded, then sprinkler-irrigated to germinate seed on March 20, 2024on 84 inches between bed centers. All other water was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed. Treatment beds were separated by single nontreated beds. Treatments were applied with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Spray treatments were done on 05-21-2024, 05-31-2024, 06-07-2024 and 06-14-24. Powdery mildew was first seen on 06-05-24. Please see excel file for additional details.
Disease severity of powdery mildew (caused by Sphaerotheca fuliginea and S. fusca) severity was determined 6-17-2024 by rating 10 plants within each of the four replicate plots per treatment using the following rating system: 0 = no powdery mildew present; 1 = one to two mildew colonies on leaves ;2 = powdery mildew present on one quarter of leaves; 3 = powdery mildew present on half of the leaves; 4 = powdery mildew present on more than half of leaf surface area ; 5 = powdery mildew present on entire leaf. These ratings were transformed to percentage of leaves infected values before being statistically analyzed.
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. Most treatments significantly reduced the final severity of powdery mildew compared to nontreated plants. Quintec, Merivon, Tesaris, Luna Sensation, and V6M-5-14 V gave the best disease control. Phytotoxicity symptoms were not noted for any treatments in this trial.
Band-Steam Applicator for Controlling Soilborne Pathogens and Weeds in Lettuce
Steam sterilization of soils is commonly used in plant nurseries and greenhouses for effective control of soilborne pathogens and weed seeds. The technique, however, is highly energy intensive as the entire soil profile is heated. This is too costly and slow to be practical for field scale vegetable production. To reduce energy consumption and cost, use of band-steaming, where steam is applied only in the area where it is needed – in the plant root zone, is proposed. In this method, narrow strips of soil centered on the seed line are treated with steam rather than the whole bed.
Over the course of the last year, we developed a prototype band-steam and co-product applicator that is designed to raise soil temperatures in a band 2” deep by 4” wide to levels sufficient to control soilborne pathogens (140 °F for > 20 minutes) and weed seed (150 °F for > 20 minutes). The device is principally comprised of a 35 BHP steam generator and a co-product applicator mounted on top of a bed shaper (Fig.1). The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper. An exothermic compound can be co-applied via shank injection and/or a banding spray nozzle. The rationale behind co-applying an exothermic compound with steam is that exothermic compounds react and release heat when combined with water, thereby reducing energy requirements and increasing travel speed.
Preliminary testing of the device this spring in Yuma, AZ were very promising. Trial results showed that application of steam alone effectively raised soil temperature in the center of the seed line to levels required for effective pest control (140 °F for more than 20 minutes). Use of the exothermic compound increased soil temperature by about 10 °F. A video of the device in action can be found at the link provided below.
We are currently evaluating the device in field trials with lettuce in Salinas, CA. Target pests in these experiments conducted in collaboration with Steve Fennimore, UC Davis, are soil pathogens which cause Sclerotinia lettuce drop and in-row weeds. Future articles will report the findings of this research.
This fall, we will be replicating these tests in Yuma, AZ and also investigating the effectiveness of band-steam for controlling Fusarium oxysporum f. sp. lactucae which causes Fusarium wilt of lettuce. Heat has been shown to effectively kill Fusarium oxysporum spores and control Fusarium wilt disease. As an example, soil solarization, where clear plastic is placed over crop beds during the summer, raises soil temperatures to 150-155˚F at the soil surface, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
These projects are sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
If you are interested in seeing the machine operate or would like more information, please feel free to contact me.
See the band-steam and co-product applicator in action!
References:
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
The volatility of herbicides, or the change from a solid or liquid to a gas, is dependent on several environmental factors and is extremely variable. We have been working on finding a replacement for Glyphosate for non-crop weed control and have tried to determine the stability of the potential herbicide alternatives. There are various methods used to measure herbicide volatility. All herbicides are initially tested in the laboratory to determine volatility and other properties. Volatility is specifically measured by placing a given volume of herbicide in a container, exposing it to various temperatures and humidity’s and then weighing how much is left. This is done under very controlled conditions. Another technique that is often the next step is to conduct bioassay studies in a greenhouse. This usually involves placing a container with the herbicide spray solution in a closed environment with sensitive plants. Injury to the bioassay plants are measured visually or by some other means. Field Studies are often conducted to measure herbicide volatility. This technique is the most applied, but the results are often imprecise and variable depending on environmental conditions. This commonly involves spraying an isolated area in the field and after the spray has settled placing sensitive plants at variable distances and directions away. Injury is observed or measured at variable time periods. We used this technique on June 10 to June 15 this year at the Yuma Valley Agriculture Center to measure volatility of 13 herbicides we are evaluating as alternatives to Glyphosate. Seven X 10 Ft. plots were sprayed, and tomato plants were placed 25Ft. away from each sprayed area on the north, south, east and west corners 1 hours after application A 50 Ft. buffer separated each sprayed plot. Visual injury was measured to the tomato plants at 24 and 48 hours after they were placed in the field. The 13 herbicides were used in this trial included 5 modes of action and are listed below.
The temperature reached above 100 F, the humidity was 10 to 20% and wind was 5 to 10 MPH during the trial. No injury symptoms were observed to any of the tomato plants from any of the herbicide treatments. The trial included low volatility formulations of the plant growth regulators, 2-4-D (Embed) and Dicamba (Enginia) which are often volatile under these hot and dry conditions. Neither of these two, or any of the other included herbicides, moved 25 ft or more in this one trial. We know, however, that in other trials the results have sometimes been different. Volatility is variable and difficult to measure in field trials.