With the desert produce season almost completed and the spring melon season beginning, now is a good time to review the insecticide chemistries commonly used in your insect management programs. This is an important consideration as you make the transition from winter produce to alfalfa, spring melons and summer cotton where many of the same insecticide products are available in all these commodities. Sustaining long-term insecticide efficacy that provides cost-effective crop protection requires a conscious effort on the part of PCAs and growers to use insecticides responsibly. Over the past 30 years, Agrochemical Manufacturers have developed and brought to market over 20 new classes of chemistry that are highly effective, selective, and significantly safer than their chemical predecessors. These include the neonicotinoids, spinosyns, tetramic acid derivatives and anthranilic diamides to name a few. Most recently, we have seen new feeding disruptor products, PQZ (pyrifluquinazon) and Versys/Sefina (afidopyropen) being applied to fall melons for virus management and in winter vegetables for aphid management. Although, the development of new insecticide chemistries has been a bit slow over the past few years, we’re now seeing industry beginning to develop several new experimental insecticides for desert crops. You’ll be pleased to know that several compounds are being targeted for western flower thrips. Of course, at best many of these products are a few years away from registration. But this is great news as many of the older products are slowly being phased out of the marketplace. It was just a couple of years ago that flubendiamide (Belt, Vetica) was removed from the market, chlorpyrifos (Lorsban) is now gone, and EPA is currently proposing label changes to the neonicotinoids which could impact their use on many important crops. Thus, it is imperative to sustain the efficacy of the newer insecticide tools currently available and Insecticide Resistance Management (IRM) is now more important than ever. The most fundamental approach to IRM is to minimize the selection of resistance by a pest to any one type of insecticide chemistry. The key to sustaining insecticide susceptibility is to avoid exposure of successive generations of an insect pest population to the same MOA. Historically, alternating, or rotating compounds with different modes of action (MOA) each time you spray has provided sustainable and effective IRM in our desert cropping systems. When it is comes to IRM; “rotation, rotation, rotation”. In other words, never expose a generation of insects to the same MOA more than twice. The Insecticide Resistance Action Committee (IRAC), a coordinated crop protection industry group, was formed to develop guidelines to delay or prevent resistance. Using their most recent information we have produced a brief publication which provides the latest local information on the modes of actions, routes of activity and pest spectrum for important insecticide chemistries used in desert produce and melon crops - see the attached Insecticide Modes of Action on Desert Produce Crops. This classification list will provide you with an additional set of guidelines for the selection of insecticides that can be used in desert IPM programs.
Late blight of celery is caused by fungi Septoria spp. The disease is named late blight as it is mostly seen at the later in the growing season, but don’t be surprised if you see the symptoms in early season when the weather is conducive. Leaf spots are dark, circular to irregular in shape, and 3-10 mm in diameter. Dark colored fruiting bodies (pycnidia) of the fungus which form in the center of leaf spots give the spots a grainy appearance. In case of severe infection, large number of spots are formed and can significantly reduce yield. Sometimes, angular spots are seen as the symptoms are restricted by leaf venation. The stalk or petiole of the plants can also be infected and large number of pycnidia observed in the stalk. Pycnidia is basically huge amounts of asexual spores in dark fruiting bodies and are formed on the older lesions and their development is encouraged by moist weather.
The pathogen is seed borne but will survive in soil in decomposing celery tissue for months. Cool and wet weathers favor the disease. Temperatures below 75 F are conducive to disease formation. High humidity allows abundant production of spores and epidemics are initiated by splashing spores or by movement of spores by contact. Rain, heavy dew or fog, and sprinkler irrigation when temperatures are above 70°F encourage disease development; splashing water disperses spores and aids in spore germination and infection
Acquiring clean seeds is the best management practice for the disease. Hot water treatments are effective but might interfere the germination percentage. Clean cultivation, not planting new crop next to the infected crop field, crop rotation, and fungicides can be used to manage the disease. Avoid sprinkle irrigation after symptoms are observed. Copper sprays can be used in organic farming.
Speaking of Celery disease
This year we will be conducting fungicide trials on foliar disease of celery. If your product is registered for organic celery production, the cost is covered by Specialty Crop Block Grant. For chemicals to be used against foliar disease (late blight or powdery mildew depending on disease incidence) and additional information please contact Bindu Poudel-ward (bpoudel@arizona.edu).
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Contact herbicides are those that only affect the part of the weed that they “contact” They don’t move into or affect any other part of a plant. They were the first herbicides used and surprisingly, they still are better at controlling some weeds than any other products that have been developed. They usually control only small weeds with good coverage although some of them will kill large malva , Purslane and some other difficult to kill weeds. Goal, Sharpen, Treevix and Gramoxone, which are all contacts, will kill malva and purslane while systemic herbicides like Glyphosate and 2,4-D, misses them. Maestro or Bucril (Bromoxynil), also an old contact, will kill swinecress while many systemics like the growth regulators ,miss it. Glufosinate( Liberty, Rely) is a contact that is very broad spectrum and kills more grasses and broadleaves than many systemic herbicides. These all work very fast and in this age of immediate gratification ,you don’t have to wait long. Most have little soil residual activity (except Goal, Chateau and a couple others) Goal and Chateau are contacts but used mostly preemergence to the weeds. They “ contact” the weeds when they emerge at the surface. which is a benefit where double or triple cropping is common. Most( again except Goal) are not volatile but will cause pretty clear contact injury when the spray moves to sensitive crops. Paraquat was registered in 1959 and is still a very useful tool for desiccating plants. Many restrictions have been put on its use because of its toxicity to humans. Most contact herbicides are non-selective and will injure most living plant tissue. They are used selectively with directed spray or timing. Adjuvants are often required to increase absorption, spreading and sticking.