Summer is finally over. Brassica transplants are in the ground, and direct-seeded broccoli and lettuce plantings are now beginning. In the past week, I’ve observed or received reports from PCAs of key insect pests beginning to show up (or not) on melon and early produce crops in the desert.
Seedling pests: Flea beetles (FB) are beginning to show up in transplanted crops like they always do, but pressure has been light so far. We haven’t seen much in our experimental plots at YAC either. Remember, FB adults lay eggs in the soil of their favored local host plants (i.e., alfalfa, cotton, purslane, pigweed and nightshade) where larvae feed on the roots to later emerge as adults. So, keep in mind, the source of that FB infestations hitting your new stands may not just be freshly cut hay, defoliated cotton, or disked weeds. In some areas (Yuma Valley), crickets seem to be very abundant. Crickets like moisture and are often found under sprinkler pipes but can also be found in cracks in soils around fields or in drainage areas.
Bagrada bug: We’ve already had reports of bagrada bug adults on two transplanted cauliflower fields in Dome Valley. Not sure whether they arrived with the transplants or are moving from surrounding crops. However, it’s still early and they might surprise you as the season progresses. Look for those fresh feeding signs on cotyledons and young leaves. Experience suggests that they are most abundant after the humidity breaks.
Lepidopterous Larvae (worms): Worm pressure seems to be below normal. Trap catches so far show that Cabbage looper moths are almost non-existent, and no reports on melons to date. They should pick-up as we approach October. No reports of Beet armyworm larvae on the earliest transplants yet, and areawide pheromone traps suggest that moth activity is below normal. But they will show up sooner or later, so get ready. You have numerous insecticide alternatives at your disposal to control them. Have had a couple of reports of Diamondback moth larvae on newly transplanted brassica crops. However, we’ve yet to capture moths on pheromone traps which suggests that adult immigration on high altitude winds associated with storms has not occurred. Remember, DBM disappear each summer and reestablish on desert crops via transplants or migrate in on monsoon/tropical storms. I strongly stress that you check your Cole crops closely this fall, particularly following storms or on plants originating from coastal CA.
Whiteflies: Area wide sticky trap captures have been about normal for early September, but whiteflies can migrate long distances on high winds. Adult numbers increased on my melon plants last week and remain high. Reports in area melons range from light to moderate numbers so far, but there is still a lot of cotton out there yet to be picked. The good news is there are several insecticide alternatives to control them in produce.
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Spinach ‘Revere’ was seeded, then sprinkler-irrigated to germinate seed Jan 18, 2024 on beds with 84 in. between bed centers and containing 30 lines of seed per bed. All irrigation water was supplied by sprinkler irrigation. Treatments were replicated four times in a randomized complete block design. Replicate plots consisted of 15 ft lengths of bed separated by 3 ft lengths of nontreated bed. Treatments were applied with a CO2backpack sprayer that delivered 50 gal/acre at 40 psi to flat-fan nozzles.
Month
Max
Min
Average
Rainfall
January
68
42
54
1.14 in
February
73
47
59
0.50 in
March
77
50
63
0.31 in
Downy mildew (caused by Peronospora farinosa f. sp. spinaciae) was first observed in plots on Feb 19 and final reading was taken on February 26, 2024. Spray date for each treatments are listed in excel file with the results. Disease severity was recorded by determining the percentage of infected leaves present within three 1-ft2 areas within each of the four replicate plots per treatment. The number of spinach leaves in a 1-ft2 area of bed was approximately 144.
The data (found in the accompanying Excel file) illustrate the degree of disease reduction obtained by applications of the various tested fungicides. Products that provided effective control against the disease include Orondis ultra, Thrive 4 M, Fungout, Cevya, Eject and Zampro. No phytotoxicity was observed in any of the treatments in this trial.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Carryover of Vegetable Herbicides to Wheat Grown in Rotation
Almost all the herbicides used on lettuce, cole crops and melons have restrictions on how soon wheat can be planted in rotation after they have been used. Experience has demonstrated, however, that safe intervals can vary considerably based upon many factors and are almost always much longer than they need to be. The most important factors are rate applied, irrigation practices and tillage. For example, when Kerb used to be banded at 2 to 4 lbs. per acre after planting and incorporated with furrow irrigation, it was common to see treated strips across wheat fields which followed. This is uncommon now that lower rates are Chemigated. We still see some Balan injury at ends of fields or in overlaps especially when sudan is planted. Wheat it not very sensitive to Prefar and carryover injury is uncommon.