Fall melon planting is right around the corner and local fields are being prepared for planting. Growers and PCAs are well aware of cucurbit yellow stunting disorder virus (CYSDV) and the impact it can have on fall melons. This whitefly transmitted crinivirus was first identified on desert melons in the fall 2006 where widespread infections on cantaloupes, honeydews and other melons occurred. CYSDV can cause significant losses in melon fruit yield and quality, and without question, desert melon crops have been seriously affected by this virus. Melon IPM has also been impacted by CYSDV where insecticide usage on fall melons has increased significantly. We have been studying the epidemiology of CYSDV for over 10 years trying to understand the complex relationships between the virus, vector and our local cropping system. Our ultimate goal is to develop practical approaches for reducing CYSDV impact on fall melon production. In addition, we continue to develop new information on chemical control of the whitefly vector (Bemisia whitefly adults).
Last fall, whitefly populations were lighter than normal, and CYSDV incidence on fall melons was the lowest we’ve recorded on melons since the virus as first reported 11 years ago. Thus far, whitefly numbers this spring and summer have been relatively light compared to previous years and the incidence of CYSDV was generally light on spring melons. How these low numbers translate into virus incidence on the fall melon crop is unknown? Regardless, experience suggests that growers should anticipate CYSDV to be present. Further, given the aggressive management programs that PCAs and growers are now using, it will be interesting to see how CYSDV impacts melon production this fall. We’ll be tracking both whiteflies and CYSDV incidence again in 2017. Our research to date suggests that fall melons produced near cotton or near areas where spring melons were recently produced are at the highest risk of infection. When possible, growers should attempt to isolate fall melon plantings as far away as possible from these sources of whiteflies and CYSDV. Growers forced to plant fall melons near these crops should be vigilant in minimizing adult whitefly infestation levels with insecticides during pre-bloom growth stages. To view a summary of the status of CYSDV in Yuma County and guidelines for management visit 2017 Guidelines for Whitefly and CYSDV Management on Fall Melons.
In response to the recent outbreaks of Diamondback moth (DBM) , Plutella xylostella in Yuma, we have established a pheromone trap network designed to monitor the activity and movement of adult populations of DBM. PCAs have had difficulty controlling DBM in cabbage, broccoli and cauliflower since October. Traps have been placed in Roll, Wellton, Dome Valley, Gila Valley and Yuma Valley in locations where cole crops are presently being grown or in areas where infestations were known to occur this fall.
This study was conducted at the JV farms at Gila Valley. Lettuce variety ‘Guapo’ was seeded, then sprinkler-irrigated to germinate seed on September 19, 2023, on double rows 12 in. apart on beds with 42 in. between bed centers. Rest of the irrigation was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed, which contained two 25 ft rows of lettuce. Plants were thinned on October 9, 2023 at the 3-4 leaf stage to a 12-inch spacing. Treatment beds were separated by single nontreated beds. Treatments were applied by incorporating in soil before seeding or with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Month
Max
Min
Avg
Rain
September
100
71
86
0.71 in
October
93
61
77
0.00 in
November
80
51
65
0.08 in
December
71
44
57
0.82 in
Fusarium wilt (caused by Fusarium oxysporum f. sp. lactucae ) rating was done in the field by observing the typical symptom of lettuce wilt. Confirmation was done by cutting the cross section of roots. Disease scoring/rating was done on December 6, 2023.
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. The disease pressure was extremely high in 2023, and most treatments showed little or no control against the disease. The treatments that showed some activity were Bexfond, Cevya, Rhyme, and Serifel. Plant vigor was normal and phytotoxicity symptoms were not observed in any treatments in this trial.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Carryover of Vegetable Herbicides to Wheat Grown in Rotation
Almost all the herbicides used on lettuce, cole crops and melons have restrictions on how soon wheat can be planted in rotation after they have been used. Experience has demonstrated, however, that safe intervals can vary considerably based upon many factors and are almost always much longer than they need to be. The most important factors are rate applied, irrigation practices and tillage. For example, when Kerb used to be banded at 2 to 4 lbs. per acre after planting and incorporated with furrow irrigation, it was common to see treated strips across wheat fields which followed. This is uncommon now that lower rates are Chemigated. We still see some Balan injury at ends of fields or in overlaps especially when sudan is planted. Wheat it not very sensitive to Prefar and carryover injury is uncommon.