Impact of Diamondback Moth on Arizona Cole Crops: 2017 Survey Results
In Arizona, the diamondback moth (DBM) is typically considered a minor pest that occasionally builds up to damaging levels in the winter and spring. In most years, growers can easily control the pest with 1-2 well timed insecticide sprays. However, beginning in October 2016 outbreaks of an invasive DBM population occurred throughout all vegetable growing regions in Arizona and continued throughout the remainder of the spring growing season. Cole crops that were affected included broccoli, cauliflower, cabbage, kale, mizuna/arugula, Napa cabbage, bok choy, Brussel sprouts and Brassica seed crops. It was quickly determined that the source of the DBM populations originated from infested transplants grown in local desert greenhouses. Within weeks of transplanting, PCAs and growers found that they could not adequately control the DBM infestations. To further complicate the situation, it was later discovered that the invasive DBM population was very resistant to the anthranillic diamide insecticides that are commonly used to control Lep larvae. After the first transplanted fields began to harvest in November, several growers reported that seriously infested fields suffered significant yield reductions, and incurred extremely high control costs. By late December, DBM populations began to spread from the infested transplanted fields to direct-seeded crops throughout the region, causing further losses. By February, reports of infested broccoli, cabbage and cauliflower fields were routine. The DBM infestations experienced by Arizona growers in 2016-17 were not anticipated, and the resistant population that entered the desert caused serious losses in cole crops. It has been suggested that the DBM outbreaks this year were comparable in severity to the early sweetpotato whitefly outbreaks in 1992. In an attempt to document the impact of the DBM outbreaks on Arizona cole crops, we conducted a two-part survey of growers and PCAs from Yuma and Maricopa Counties in April 2017 to (1) estimate the severity of yield losses to DBM on direct-seeded and transplanted cole crops, and (2) the intensity of chemical management required to control DBM, and associated level of control provided by each insecticide product used. To download a copy of the survey results, please go to Impact of Diamondback Moth Outbreaks on Arizona Cole Crops in 2016-17.
In Arizona, the diamondback moth (DBM) is typically considered a minor pest that occasionally builds up to damaging levels in the winter and spring. In most years, growers can easily control the pest with 1-2 well timed insecticide sprays. However, beginning in October 2016 outbreaks of an invasive DBM population occurred throughout all vegetable growing regions in Arizona and continued throughout the remainder of the spring growing season. Cole crops that were affected included broccoli, cauliflower, cabbage, kale, mizuna/arugula, Napa cabbage, bok choy, Brussel sprouts and Brassica seed crops. It was quickly determined that the source of the DBM populations originated from infested transplants grown in local desert greenhouses. Within weeks of transplanting, PCAs and growers found that they could not adequately control the DBM infestations. To further complicate the situation, it was later discovered that the invasive DBM population was very resistant to the anthranillic diamide insecticides that are commonly used to control Lep larvae. After the first transplanted fields began to harvest in November, several growers reported that seriously infested fields suffered significant yield reductions, and incurred extremely high control costs. By late December, DBM populations began to spread from the infested transplanted fields to direct-seeded crops throughout the region, causing further losses. By February, reports of infested broccoli, cabbage and cauliflower fields were routine. The DBM infestations experienced by Arizona growers in 2016-17 were not anticipated, and the resistant population that entered the desert caused serious losses in cole crops. It has been suggested that the DBM outbreaks this year were comparable in severity to the early sweetpotato whitefly outbreaks in 1992. In an attempt to document the impact of the DBM outbreaks on Arizona cole crops, we conducted a two-part survey of growers and PCAs from Yuma and Maricopa Counties in April 2017 to (1) estimate the severity of yield losses to DBM on direct-seeded and transplanted cole crops, and (2) the intensity of chemical management required to control DBM, and associated level of control provided by each insecticide product used. To download a copy of the survey results, please go toIn Arizona, the diamondback moth (DBM) is typically considered a minor pest that occasionally builds up to damaging levels in the winter and spring. In most years, growers can easily control the pest with 1-2 well timed insecticide sprays. However, beginning in October 2016 outbreaks of an invasive DBM population occurred throughout all vegetable growing regions in Arizona and continued throughout the remainder of the spring growing season. Cole crops that were affected included broccoli, cauliflower, cabbage, kale, mizuna/arugula, Napa cabbage, bok choy, Brussel sprouts andBrassicaseed crops. It was quickly determined that the source of the DBM populations originated from infested transplants grown in local desert greenhouses. Within weeks of transplanting, PCAs and growers found that they could not adequately control the DBM infestations. To further complicate the situation, it was later discovered that the invasive DBM population was very resistant to the anthranillic diamide insecticides that are commonly used to control Lep larvae. After the first transplanted fields began to harvest in November, several growers reported that seriously infested fields suffered significant yield reductions, and incurred extremely high control costs. By late December, DBM populations began to spread from the infested transplanted fields to direct-seeded crops throughout the region, causing further losses. By February, reports of infested broccoli, cabbage and cauliflower fields were routine. The DBM infestations experienced by Arizona growers in 2016-17 were not anticipated, and the resistant population that entered the desert caused serious losses in cole crops. It has been suggested that the DBM outbreaks this year were comparable in severity to the early sweetpotato whitefly outbreaks in 1992. In an attempt to document the impact of the DBM outbreaks on Arizona cole crops, we conducted a two-part survey of growers and PCAs from Yuma and Maricopa Counties in April 2017 to (1) estimate the severity of yield losses to DBM on direct-seeded and transplanted cole crops, and (2) the intensity of chemical management required to control DBM, and associated level of control provided by each insecticide product used. To download a copy of the survey results, please go to
In response to the recent outbreaks of Diamondback moth (DBM) , Plutella xylostella in Yuma, we have established a pheromone trap network designed to monitor the activity and movement of adult populations of DBM. PCAs have had difficulty controlling DBM in cabbage, broccoli and cauliflower since October. Traps have been placed in Roll, Wellton, Dome Valley, Gila Valley and Yuma Valley in locations where cole crops are presently being grown or in areas where infestations were known to occur this fall.
This study was conducted at the JV farms at Gila Valley. Lettuce variety ‘Guapo’ was seeded, then sprinkler-irrigated to germinate seed on September 19, 2023, on double rows 12 in. apart on beds with 42 in. between bed centers. Rest of the irrigation was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed, which contained two 25 ft rows of lettuce. Plants were thinned on October 9, 2023 at the 3-4 leaf stage to a 12-inch spacing. Treatment beds were separated by single nontreated beds. Treatments were applied by incorporating in soil before seeding or with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Month
Max
Min
Avg
Rain
September
100
71
86
0.71 in
October
93
61
77
0.00 in
November
80
51
65
0.08 in
December
71
44
57
0.82 in
Fusarium wilt (caused by Fusarium oxysporum f. sp. lactucae ) rating was done in the field by observing the typical symptom of lettuce wilt. Confirmation was done by cutting the cross section of roots. Disease scoring/rating was done on December 6, 2023.
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. The disease pressure was extremely high in 2023, and most treatments showed little or no control against the disease. The treatments that showed some activity were Bexfond, Cevya, Rhyme, and Serifel. Plant vigor was normal and phytotoxicity symptoms were not observed in any treatments in this trial.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Carryover of Vegetable Herbicides to Wheat Grown in Rotation
Almost all the herbicides used on lettuce, cole crops and melons have restrictions on how soon wheat can be planted in rotation after they have been used. Experience has demonstrated, however, that safe intervals can vary considerably based upon many factors and are almost always much longer than they need to be. The most important factors are rate applied, irrigation practices and tillage. For example, when Kerb used to be banded at 2 to 4 lbs. per acre after planting and incorporated with furrow irrigation, it was common to see treated strips across wheat fields which followed. This is uncommon now that lower rates are Chemigated. We still see some Balan injury at ends of fields or in overlaps especially when sudan is planted. Wheat it not very sensitive to Prefar and carryover injury is uncommon.