Now that we’re experiencing shorter days and changing weather patterns--cooler temperatures and winds consistently blowing out of the north and west-- PCAs may begin to see an increase in winged aphids and colonies showing up on desert produce crops. Experience tells us that this is an annual occurrence. The key aphid pests found on winter produce do not over-summer here, but rather migrate into our cropping system from mountainous regions of southern California via wind currents during the late fall. Once the aphids reach our desert valleys, they typically move from crop to crop until they find a suitable host to feed and colonize on. No need to panic if you suddenly find a few winged aphids on a lettuce plant. But it is important that you correctly identify the aphid species found on your crops. It is not uncommon to find winged aphids on lettuce or broccoli that do not colonize on the crop. An example of these would be cabbage aphid which will colonize and infest cole crops but not lettuce, spinach or celery. Other examples would include aphids that colonize small grains (i.e., corn leaf aphid) or alfalfa (i.e., pea aphid). Because these aphid species will not colonize produce crops, it is important to be able to distinguish them from the aphids that do colonize and require management to prevent problems at harvest (i.e., green peach aphid, foxglove aphid, lettuce aphid, cabbage aphid). Proper aphid ID can also influence your choice of insecticide, but more on that in a later update. Don’t be surprised if you start finding small colonies of cowpea aphids showing up on frame leaves in lettuce. That is a common occurrence every fall. Not to worry, experience has shown us that although small cowpea aphid colonies may be found on lettuce, the populations generally stay low on the plant on the frame leaves and rarely increase to levels causing contamination issues. But you never know. So keep a close watch out for these aphids found in your crops, as our weird weather this year may be more conducive to their development than normal. Bottom Line: proper aphid identification is important; it can save a PCA time and money, and prevent unnecessary insecticide applications. If you find an unusual aphid in your produce, don’t hesitate to drop it by the Ag Center and we’ll get it identified for you. Just recently we identified melon aphids that were found colonizing celery, and green peach aphid nymphs were brought in from a cabbage in Dome Valley. If you want to make fast and accurate IDs, you might use the attached publication Aphid Identification in Desert Produce Crops that can assist you in identifying winged and wingless (apterous) aphids important in leafy vegetables and cole crops.
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Variety: Deluxe (HMX2595) was seeded, then sprinkler-irrigated to germinate seed on March 20, 2024on 84 inches between bed centers. All other water was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed. Treatment beds were separated by single nontreated beds. Treatments were applied with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Spray treatments were done on 05-21-2024, 05-31-2024, 06-07-2024 and 06-14-24. Powdery mildew was first seen on 06-05-24. Please see excel file for additional details.
Disease severity of powdery mildew (caused by Sphaerotheca fuliginea and S. fusca) severity was determined 6-17-2024 by rating 10 plants within each of the four replicate plots per treatment using the following rating system: 0 = no powdery mildew present; 1 = one to two mildew colonies on leaves ;2 = powdery mildew present on one quarter of leaves; 3 = powdery mildew present on half of the leaves; 4 = powdery mildew present on more than half of leaf surface area ; 5 = powdery mildew present on entire leaf. These ratings were transformed to percentage of leaves infected values before being statistically analyzed.
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. Most treatments significantly reduced the final severity of powdery mildew compared to nontreated plants. Quintec, Merivon, Tesaris, Luna Sensation, and V6M-5-14 V gave the best disease control. Phytotoxicity symptoms were not noted for any treatments in this trial.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Carryover of Vegetable Herbicides to Wheat Grown in Rotation
Almost all the herbicides used on lettuce, cole crops and melons have restrictions on how soon wheat can be planted in rotation after they have been used. Experience has demonstrated, however, that safe intervals can vary considerably based upon many factors and are almost always much longer than they need to be. The most important factors are rate applied, irrigation practices and tillage. For example, when Kerb used to be banded at 2 to 4 lbs. per acre after planting and incorporated with furrow irrigation, it was common to see treated strips across wheat fields which followed. This is uncommon now that lower rates are Chemigated. We still see some Balan injury at ends of fields or in overlaps especially when sudan is planted. Wheat it not very sensitive to Prefar and carryover injury is uncommon.