Insect Pests during Stand Establishment on Fall Crops
Desert growers have begun planting fall melons and transplanting cole crops, while direct seeding of produce crops is just a couple of week away. Accordingly, PCAs and growers will soon be faced with a number of important insect management issues. As crops begin to emerge, they can expect to encounter a number of insect pests that have the potential to cause serious economic losses to crop stands. These include flea beetles, crickets (sometimes grasshoppers), darkling and rove beetles, and saltmarsh caterpillars (‘woolly worms’). These insects all have chewing mouthparts and most are capable of consuming large amounts of leaf tissue in a short period of time. Seedling crops at the cotyledon stage are most susceptible; these pests can devour entire cotyledons or outright kill small seedlings. If left unprotected, larger seedling plants (1-2 leaf stage) can sustain significant feeding damage on the terminal growing points or newly emerged leaves. Not only can this feeding stunt plant growth, but can result in lack of stand uniformity and ultimately, maturity at harvest. Host crop sources of flea beetle, cricket and "woolly worm" infestations include numerous summer crops (e.g., sudan grass, cotton and alfalfa) and weeds (e.g., purslane). We are currently noticing high numbers of flea beetles and crickets at the Yuma Ag Center on sudan grass and weeds. Salt caterpillars have not been detected, but are known to disperse from alfalfa and pima cotton. Experience indicates that melon fields planted adjacent to these crops/weedy areas are at a high risk from these seedling pests, particularly flea beetles. As summer crops are harvested or terminated during the next several weeks, these seedling pests typically move to the next available host crop; lettuce, cole crops and melons. Fortunately, there are many registered insecticide alternatives available that can be applied via sprinkler chemigation (i.e., pyrethroids) or foliar sprays (i.e., methomyl, neonicotinoids) that can cost-effectively minimize their abundance and damage to emerging produce and melon crops. Additionally, seed treatments are available for lettuce and cole crops that will protect stands from flea beetles. For more information on insect pests of leafy vegetables and melons at stand establishment please see Insect Management on Desert Produce and Melons: Pests at Stand Establishment.
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Variety: Deluxe (HMX2595) was seeded, then sprinkler-irrigated to germinate seed on March 20, 2024on 84 inches between bed centers. All other water was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed. Treatment beds were separated by single nontreated beds. Treatments were applied with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Spray treatments were done on 05-21-2024, 05-31-2024, 06-07-2024 and 06-14-24. Powdery mildew was first seen on 06-05-24. Please see excel file for additional details.
Disease severity of powdery mildew (caused by Sphaerotheca fuliginea and S. fusca) severity was determined 6-17-2024 by rating 10 plants within each of the four replicate plots per treatment using the following rating system: 0 = no powdery mildew present; 1 = one to two mildew colonies on leaves ;2 = powdery mildew present on one quarter of leaves; 3 = powdery mildew present on half of the leaves; 4 = powdery mildew present on more than half of leaf surface area ; 5 = powdery mildew present on entire leaf. These ratings were transformed to percentage of leaves infected values before being statistically analyzed.
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. Most treatments significantly reduced the final severity of powdery mildew compared to nontreated plants. Quintec, Merivon, Tesaris, Luna Sensation, and V6M-5-14 V gave the best disease control. Phytotoxicity symptoms were not noted for any treatments in this trial.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Carryover of Vegetable Herbicides to Wheat Grown in Rotation
Almost all the herbicides used on lettuce, cole crops and melons have restrictions on how soon wheat can be planted in rotation after they have been used. Experience has demonstrated, however, that safe intervals can vary considerably based upon many factors and are almost always much longer than they need to be. The most important factors are rate applied, irrigation practices and tillage. For example, when Kerb used to be banded at 2 to 4 lbs. per acre after planting and incorporated with furrow irrigation, it was common to see treated strips across wheat fields which followed. This is uncommon now that lower rates are Chemigated. We still see some Balan injury at ends of fields or in overlaps especially when sudan is planted. Wheat it not very sensitive to Prefar and carryover injury is uncommon.
Corn earworm:
CEW moth counts remain low across all locations; average for this time of the season.
Beet armyworm:
Trap counts decreased in all locations, and well below average for mid- winter.
Cabbage looper:
Cabbage looper trap counts remained low in most locationssand below average for early January.
Diamondback moth:
Adult activity steadily increasing during December. Above average for this time of year. Activity highest in Bard, Gila and Dome Valleys associated with nearby brassica seed crops.
Whitefly:
Adult movement remained low in all locations consistent with previous seasons.
Thrips:
Thrips adult movement decreased in most locations last week, but increased sharply in Roll. Activity about average for mid-winter.
Aphids:
Aphid movement low in all locations. Trap captures average for this time of season.
Leafminers:
Adult activity decreased in all areas, about average for this time of season.