Flubendiamide The Arizona produce industry received some good news and some bad news recently. First, the bad news. Earlier this year, the U.S. Environmental Protection Agency (EPA) issued a notice with the intent to cancel flubendiamide products (Belt SC and Vetica) due to potential risks to aquatic invertebrates. Bayer Crop Science was asked to voluntarily cancel all flubendiamide registrations, but subsequently rejected the EPA’s decision and requested a hearing from Agency’s Administrative Law Judge and Environmental Appeals Board (EAB). Unfortunately, the Appeals Board has upheld the earlier EPA decision to cancel the registration of flubendiamide. So, as of today, Belt and Vetica can no longer be sold by Bayer or Nichino in the U.S., but the EAB decided that it would allow distributors and retailers to continue to distribute and sell existing stocks of the two products remaining in inventory. Thus PCAs and growers can continue using remaining product in inventory. This final decision is unfortunate since both Belt and Vetica are important cost-effective alternatives for worm control in produce and melon crops. In fact, among the diamide chemistries, Belt and Vetica were the most commonly used products in fall lettuce. For more information, see this Flubendiamide EAB Decision.
Sulfoxaflor The good news is that it appears that sulfoxaflor (Sequoia) will soon be registered and available for use on our leafy vegetable and brassica crops this winter. As you may recall the EPA was forced to cancel the sulfoxaflor registration in Nov 2015 based on a court ruling that the agency did not have enough scientific data to sufficiently demonstrate that sulfoxaflor had no unreasonable adverse effects to honey bees. Since then, EPA has been re-evaluating the sulfoxaflor label amended by Dow Agrosciences that now reduces or eliminates exposure to pollinators, and is proposing to unconditionally grant a Section 3 registration for certain crops including leafy vegetables and brassicas. Unfortunately, citrus, cotton and cucurbits are not included in the proposed registration. EPA concluded that sulfoxaflor will likely replace applications of pesticides that are at a higher risk to humans and other non-target organisms (including pollinators) and delaying its registration would delay these benefits. Before the cancellation of sulfoxaflor, Sequoia was used extensively for aphid management on winter and spring produce. For more information on the proposed label go to Proposed Registration of Sulfoxaflor.
2023-2024 Powdery Mildew of Lettuce Fungicide Trial
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Lettuce was seeded, then sprinkler-irrigated to germinate seed on Nov 28, 2023 on double rows 12 in. apart on beds with 42 in. between bed centers. All other water was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed, which contained two 25 ft rows of lettuce. Plants were thinned Jan 17, 2024 at the 3-4 leaf stage to a 12-inch spacing. Treatment beds were separated by single nontreated beds. Treatments were applied with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Month
Max Temp (°F)
Min Temp (°F)
Average Temp (°F)
Rainfall
November
80
51
65
0.08 in
December
71
44
57
0.82 in
January
68
42
54
1.14 in
February
73
47
59
0.50 in
Powdery mildew (caused by Golovinomyces cichoracearum) efficacy trial treatments were made on February 15,2024, February 23, 2024, March 4, 2024, and March 12, 2024and .Disease was first seen on February 26,2024. Disease rating was done on March 15, 2024. Disease severity was determined by rating 10 plants within each of the four replicate plots per treatment using the following rating system: 0 = no powdery mildew present; 0.5 = one to a few very small powdery mildew colonies on bottom leaves; 1 = powdery mildew present on bottom leaves of plant; 2 = powdery mildew present on bottom leaves and lower wrapper leaves; 3 = powdery mildew present on bottom leaves and all wrapper leaves; 4 = powdery mildew present on bottom leaves, wrapper leaves, and cap leaf; 5 = powdery mildew present on entire plant. These ratings were transformed to percentage of leaves infected values before being statistically analyzed. Yield loss due to rejected lettuce heads would likely begin to occur on plants with a powdery mildew rating above 2.0 (percentage of leaves infected value of 40).
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. Most treatments significantly reduced the final severity of powdery mildew compared to nontreated plants. The most effective fungicides were Rhyme, Merivon, Quintec, Cevya, Luna Sensation, Luna Experience, and Elisys.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Carryover of Vegetable Herbicides to Wheat Grown in Rotation
Almost all the herbicides used on lettuce, cole crops and melons have restrictions on how soon wheat can be planted in rotation after they have been used. Experience has demonstrated, however, that safe intervals can vary considerably based upon many factors and are almost always much longer than they need to be. The most important factors are rate applied, irrigation practices and tillage. For example, when Kerb used to be banded at 2 to 4 lbs. per acre after planting and incorporated with furrow irrigation, it was common to see treated strips across wheat fields which followed. This is uncommon now that lower rates are Chemigated. We still see some Balan injury at ends of fields or in overlaps especially when sudan is planted. Wheat it not very sensitive to Prefar and carryover injury is uncommon.
Corn earworm:First significant CEW moth activity since mid-November; particularly active in Dome/Wellton/Tacna areas.
Beet armyworm: Moth counts remain very low consistent with seasonal temperatures, but below average for this point in the season.
Cabbage looper: Slight increase in activity, but moth counts remain unusually low for this time of season.
Whitefly: Adult movement is at seasonal low consistent with temperatures and lack of melons or cotton.
Thrips: Thrips activity beginning to pick up, particularly in Tacna and Yuma Valley. Movement is still below average for February.
Aphids: Seasonal aphid counts peaked in early February and tending down last week. Counts remain high in Gila Valley and Wellton. Above average for this time of year.
Leafminers: Adult activity remains light in most trap locations. Trap counts increasing slightly in the South Gila Valley.