Whitefly populations have been present in unusually high numbers on melon crops this spring. These large buildups are in part due to warm winter temperatures which likely resulted in low adult mortality during the winter and increased biological activity over the past 4-6 weeks. As temperatures continue to increase, feeding damage from whitefly nymphs should be a concern on all melon types. Honeydew and sooty mold contamination on fruit of cantaloupes, mixed melons and watermelons can significantly reduce quality and marketability. Although whitefly numbers have been low up to now, PCAs should not be complacent in their monitoring and sampling. With the warmer weather, numbers are likely to increase rapidly in the next few weeks. Our research has shown that to prevent melon yield and quality losses, a foliar insecticide treatment should be applied when a threshold of 2 adult whiteflies per leaf is exceeded. By timing sprays based on the adult threshold, immature populations should just be starting to colonize and applying foliar sprays at this stage in population development has been shown to significantly reduce the chance of yield / quality loss during harvest. This threshold applies for the IGRs (Vetica, Courier, Knack, Oberon), and foliar applied neonicotinoids (Assail, Venom, Scorpion). (For more information, go to these documents on IPM and Whitefly Management, Whitefly Action Thresholds and Whitefly control Also, be aware of pollinators in or around melon fields. I recommend carefully reading labels to determine the products bee safety before applying any pesticide in melon fields, particularly when bees are foraging. Note: Cucurbit Yellow Stunting Disorder Virus (CYSDV) is not generally known to be yield limiting on spring melons. However, research to date suggests that fall melons may be at greater risk of CYSDV infection when planted in areas where CYSDV symptoms were found on late spring melons. Thus when practical, it is advisable to keep whitefly populations low on spring melons. This will also prevent potential dispersal in to cotton later in June and July.
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Variety: Deluxe (HMX2595) was seeded, then sprinkler-irrigated to germinate seed on March 20, 2024on 84 inches between bed centers. All other water was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed. Treatment beds were separated by single nontreated beds. Treatments were applied with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Spray treatments were done on 05-21-2024, 05-31-2024, 06-07-2024 and 06-14-24. Powdery mildew was first seen on 06-05-24. Please see excel file for additional details.
Disease severity of powdery mildew (caused by Sphaerotheca fuliginea and S. fusca) severity was determined 6-17-2024 by rating 10 plants within each of the four replicate plots per treatment using the following rating system: 0 = no powdery mildew present; 1 = one to two mildew colonies on leaves ;2 = powdery mildew present on one quarter of leaves; 3 = powdery mildew present on half of the leaves; 4 = powdery mildew present on more than half of leaf surface area ; 5 = powdery mildew present on entire leaf. These ratings were transformed to percentage of leaves infected values before being statistically analyzed.
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. Most treatments significantly reduced the final severity of powdery mildew compared to nontreated plants. Quintec, Merivon, Tesaris, Luna Sensation, and V6M-5-14 V gave the best disease control. Phytotoxicity symptoms were not noted for any treatments in this trial.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Carryover of Vegetable Herbicides to Wheat Grown in Rotation
Almost all the herbicides used on lettuce, cole crops and melons have restrictions on how soon wheat can be planted in rotation after they have been used. Experience has demonstrated, however, that safe intervals can vary considerably based upon many factors and are almost always much longer than they need to be. The most important factors are rate applied, irrigation practices and tillage. For example, when Kerb used to be banded at 2 to 4 lbs. per acre after planting and incorporated with furrow irrigation, it was common to see treated strips across wheat fields which followed. This is uncommon now that lower rates are Chemigated. We still see some Balan injury at ends of fields or in overlaps especially when sudan is planted. Wheat it not very sensitive to Prefar and carryover injury is uncommon.
Corn earworm:
CEW moth counts continued to decline over the past 2 weeks across all locations and about average for this time of the season.
Beet armyworm:
Trap counts decreased in most locations, but well below average for late-October. Most activity in Yuma, dome and Gila Valleys.
Cabbage looper:
Cabbage looper trap counts declined in most areas but increased in the Bard and Yuma Valley. Activity below average for early November.
Diamondback moth:
Adults peaked in Gila and Yuma Valleys and above average in all locations for this time of year. Traps located adjacent to cauliflower and broccoli transplants had the highest trap captures
Whitefly:
Adults remains active in Dome Valley, Wellton, and Roll consistent with melon crops completing harvest, but below average movement for this time of season.
Thrips:
Thrips adult movement increased in most locations last week, particularly in Dome Valley, Wellton, and Tacna. Activity about average for early November.
Aphids:
Aphid movement increased sharply in Bard, N. Yuma Valley and N. Gila Valleys over the past 2 weeks. Activity average for this time of year.
Leafminers:
Adult activity increased sharply in the Gila Valley, Roll and Wellton; about average for this time of season.