As is typical this time of the year, the weather has finally broken and it feels like “winter” has arrived in the desert. With cooler temperatures, you can expect a steady decline in insect abundance until temperatures begin to warm up again. Last fall, I felt that the insect pressure on produce and melons crops in the Yuma was as heavy as I’d seen in many years. This year it didn’t seem quite as heavy, but I’ve heard many PCAs complain of heavy insect pressure, particularly during November which was unusually warm. A quick look at both recent and historic data on pest abundance recorded from our research plots here in the Yuma area suggests that insect pressure this fall was a little lighter than last year, but still heavier as compared to previous years. First, whitefly adult numbers on fall melons and produce were extremely high in August, but monsoon rainfall in early September appeared to suppress their numbers for a couple of weeks thereafter. Much like last fall however, untreated melons plots on the Ag Center wilted and died rapidly as a direct result of heavy whitefly infestations. Sticky trap captures of whiteflies near cantaloupe fields from Wellton to Texas Hill, were lower than last fall, but were still higher than the previous four years. However, numbers of adults caught on traps in the Roll/Tacna area were higher in late-August this fall than we’ve ever recorded. Similarly, CYSDV incidence at harvest in cantaloupe fields in these areas was very high this fall. In all cases, high traps catches were found in melon fields in near proximity to cotton fields. Based on counts from untreated lettuce at the Yuma Ag Center, beet armyworm and cabbage looper population abundance this fall was slightly lower than last fall. However, worm pressure the past two years was higher than we’ve seen the previous 5 years. Populations began infesting plots in early September, and remained steady throughout October and into early November. Egg deposition and larval development has only recently declined significantly. Corn earworm numbers were lower than what we observed last year, but could still easily be found in untreated plots. Finally, Bagrada bug infestations were abundant in untreated broccoli plots at YAC for the 4th consecutive year. As expected, low-moderate population appeared in early September, but increased steadily through September and peaking in early October. Overall, the peak numbers observed were not as high as either 2010 or 2012, but much higher than in 2011. The infestation levels in our untreated broccoli plots this year remained at damaging levels throughout October and into mid-November. This is the first year we have seen Bagrada bugs this abundant in November. In contrast, similar to last fall, western flower thrips population numbers have been relatively low, but unlike last fall, we’ve been picking up winged green peach aphids and colonies on sticky traps and in untreated lettuce plots since early November. How these aphid and thrips numbers will translate into potential population pressure in January and February is unknown, but you should anticipate their abundance as usual. I’m often asked why we see such differences in insect pest numbers each year. It’s obviously a very complex question, and I don’t have a good answer. The bottom line; insect abundance and outbreaks are dictated by many abiotic, biotic and crop management factors within our cropping system. Moreover, it’s nearly impossible to consider all the factors necessary to draw a reliable conclusion. Nonetheless, graphics showing these recent trends in Whitefly, CYSDV, Lep Larvae and Bagrada abundance can be found at Pest Abundance on Desert Produce and Melon Cops in 2013.
2023-2024 Powdery Mildew of Lettuce Fungicide Trial
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Lettuce was seeded, then sprinkler-irrigated to germinate seed on Nov 28, 2023 on double rows 12 in. apart on beds with 42 in. between bed centers. All other water was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed, which contained two 25 ft rows of lettuce. Plants were thinned Jan 17, 2024 at the 3-4 leaf stage to a 12-inch spacing. Treatment beds were separated by single nontreated beds. Treatments were applied with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Month
Max Temp (°F)
Min Temp (°F)
Average Temp (°F)
Rainfall
November
80
51
65
0.08 in
December
71
44
57
0.82 in
January
68
42
54
1.14 in
February
73
47
59
0.50 in
Powdery mildew (caused by Golovinomyces cichoracearum) efficacy trial treatments were made on February 15,2024, February 23, 2024, March 4, 2024, and March 12, 2024and .Disease was first seen on February 26,2024. Disease rating was done on March 15, 2024. Disease severity was determined by rating 10 plants within each of the four replicate plots per treatment using the following rating system: 0 = no powdery mildew present; 0.5 = one to a few very small powdery mildew colonies on bottom leaves; 1 = powdery mildew present on bottom leaves of plant; 2 = powdery mildew present on bottom leaves and lower wrapper leaves; 3 = powdery mildew present on bottom leaves and all wrapper leaves; 4 = powdery mildew present on bottom leaves, wrapper leaves, and cap leaf; 5 = powdery mildew present on entire plant. These ratings were transformed to percentage of leaves infected values before being statistically analyzed. Yield loss due to rejected lettuce heads would likely begin to occur on plants with a powdery mildew rating above 2.0 (percentage of leaves infected value of 40).
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. Most treatments significantly reduced the final severity of powdery mildew compared to nontreated plants. The most effective fungicides were Rhyme, Merivon, Quintec, Cevya, Luna Sensation, Luna Experience, and Elisys.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Carryover of Vegetable Herbicides to Wheat Grown in Rotation
Almost all the herbicides used on lettuce, cole crops and melons have restrictions on how soon wheat can be planted in rotation after they have been used. Experience has demonstrated, however, that safe intervals can vary considerably based upon many factors and are almost always much longer than they need to be. The most important factors are rate applied, irrigation practices and tillage. For example, when Kerb used to be banded at 2 to 4 lbs. per acre after planting and incorporated with furrow irrigation, it was common to see treated strips across wheat fields which followed. This is uncommon now that lower rates are Chemigated. We still see some Balan injury at ends of fields or in overlaps especially when sudan is planted. Wheat it not very sensitive to Prefar and carryover injury is uncommon.