With fall produce now underway bagrada bugs have begun to show up on direct seeded and transplanted cole crops. Reports of bagrada in local cole crops are beginning to trickle in from PCAs and so far, the pressure does not appear to be as heavy as we’ve seen in the past few years. Populations of bagrada bugs at the Yuma Ag Center however, are as heavy as ever and are quickly causing damage to untreated broccoli plots. Based on research conducted over the past four growing seasons, peak abundance of bagrada bug has occurred from late September to early October. So, what should a PCA expect for this season? Can’t say for sure, but don’t be complacent just because you’re not finding a lot of bagrada adults on your first few fields. It would be wise to assume they will eventually show up in some intensity in some of your acreage, and you should prepare for them accordingly. Monitoring for bagrada at stand establishment should focus on fresh feeding signs on new plant tissue, and adults later in the day when they are most active. Research and anecdotal observations in fields conducted over the past 2 years suggests that direct-seeded and transplanted crops are susceptible to bagrada bug infestations during stand establishment and up to the 6 leaf stage. Furthermore, results suggests that it doesn’t take a large number of bagrada adults to cause significant stand losses or crop injury. In untreated plots, we have consistently observed significant damage (15-20% blind plants) to direct seeded plants during the first 7 days after emergence (cotyledon to 1-leaf Stage) with only finding an average of 1 bagrada adult / 6 row ft. If you readily find fresh feeding signs and/or adults during stand establishment, control should be initiated immediately. This can include chemigation or aerial applications with pyrethroids. Contact insecticides (such as pyrethroids, Lannate, and Lorsban) should be used once stands are lined out and pipe is pulled. After stands are established and plant size increases up to the 2 leaf stage, or on tagged transplants, consider alternating to dinotefuron (Venom/Scorpion) to protect plants from bagrada feeding. This neonicotinoid will also provide knockdown of adult whiteflies and nymphs. More information on bagrada bug management on fall cole crops can be found in these Veg Update briefs: Bagrada Bug Management Tips for the Low Desert and Knockdown and Residual Control of Bagrada Bug With Foliar Insecticides in Broccoli: 2013 Efficacy Report.
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Spinach ‘Revere’ was seeded, then sprinkler-irrigated to germinate seed Jan 18, 2024 on beds with 84 in. between bed centers and containing 30 lines of seed per bed. All irrigation water was supplied by sprinkler irrigation. Treatments were replicated four times in a randomized complete block design. Replicate plots consisted of 15 ft lengths of bed separated by 3 ft lengths of nontreated bed. Treatments were applied with a CO2backpack sprayer that delivered 50 gal/acre at 40 psi to flat-fan nozzles.
Month
Max
Min
Average
Rainfall
January
68
42
54
1.14 in
February
73
47
59
0.50 in
March
77
50
63
0.31 in
Downy mildew (caused by Peronospora farinosa f. sp. spinaciae) was first observed in plots on Feb 19 and final reading was taken on February 26, 2024. Spray date for each treatments are listed in excel file with the results. Disease severity was recorded by determining the percentage of infected leaves present within three 1-ft2 areas within each of the four replicate plots per treatment. The number of spinach leaves in a 1-ft2 area of bed was approximately 144.
The data (found in the accompanying Excel file) illustrate the degree of disease reduction obtained by applications of the various tested fungicides. Products that provided effective control against the disease include Orondis ultra, Thrive 4 M, Fungout, Cevya, Eject and Zampro. No phytotoxicity was observed in any of the treatments in this trial.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Although it is not vigorous or vegetative, Shepardspurse is one of the most widespread and difficult to control broadleaf weeds worldwide. I used to think that it spread when there was more alfalfa here and because it is not controlled with 2,4-DB (Butyrate & Butoxone) but it has continued to spread in vegetable crops. It likely has become worse each year because of its growth habits more than its tolerance to herbicides. It germinates from on or just below the soil surface. Herbicides that move or are placed below the surface often miss it. It is difficult to control with Kerb, for instance, because it leaches easily with overhead sprinklers. The seed is less than 0.1 inch in diameter and moves easily in wind and water. It is very small, and the cotyledon leaves are hardly ever seen. By the time you see it, it is at the 3 or 4 leaf stage. It grows rapidly in a rosette that is low to the ground and often covered by the crop. Herbicide coverage is difficult. It soon puts up a thin seed stalk and several seed pods (“purses”). Unlike many annual broadleaf weeds, it can produce several generations in one season. It can grow year round in many regions but has a difficult time surviving the summers in the low desert.