Historically, our Areawide Pheromone and Sticky Trap monitoring for insects was terminated around the first of April as the produce season ended. Beginning 4 years ago however, we continued our Areawide Trapping Network throughout the summer to collect trapping data from all 15 areawide trap locations year-round. So why is this additional trapping data useful? For several reasons:
1) Understanding the activity of some of our key pests when produce is not grown during the summer may give us an indication of what to expect as the fall produce season begins. This may be particularly helpful for predicting moth flights and whitefly flights in August-September coinciding with early transplanting and direct seeded crops. Another example is keeping track of corn earworm which can unexpectedly show up near the beginning of fall harvests.
2) Trapping for pests during the summer has shown us that 2 of our more important produce pests are not caught in traps during the summer. We presume this is due to the absence of brassica crops and weeds for diamondback moth, and high daytime/nighttime temperatures lethal to aphids. The fact that trap catches resume in the fall supports our conclusion that these pests are absent in the summer, only to reenter the desert via winds and/or transplants in the fall. And finally,
3) It gives me something to do in the summer other than write reports and papers.
So, visit the Areawide Summer Trap Network if you’re curious what our key pests are up to.
Late blight of celery is caused by fungi Septoria spp. The disease is named late blight as it is mostly seen at the later in the growing season but don’t be surprised if you see the symptoms in early season when the weather is conducive. With the rain and fog we had this week, it is possible that we get this disease in celery this growing season. Leaf spots are dark, circular to irregular in shape, and 3-10 mm in diameter. Dark colored fruiting bodies (pycnidia) of the fungus which form in the center of leaf spots give the spots a grainy appearance. In case of severe infection, large number of spots are formed and can significantly reduce yield. Sometimes, angular spots are seen as the symptoms are restricted by leaf venation. The stalk or petiole of the plants can also be infected and large number of pycnidia observed in the stalk. Pycnidia is basically huge amounts of asexual spores in dark fruiting bodies and are formed on the older lesions and their development is encouraged by moist weather.
The pathogen is seed borne but will survive in soil in decomposing celery tissue for months. Cool and wet weathers favor the disease. Temperatures below 75 F are conducive to disease formation. High humidity allows abundant production of spores and epidemics are initiated by splashing spores or by movement of spores by contact. Rain, heavy dew or fog, and sprinkler irrigation when temperatures are above 70°F encourage disease development; splashing water disperses spores and aids in spore germination and infection
Acquiring clean seeds is the best management practice for the disease. Hot water treatments are effective but might interfere the germination percentage. Clean cultivation, not planting new crop next to the infected crop field, crop rotation, and fungicides can be used to manage the disease. Avoid sprinkle irrigation after symptoms are observed. Copper sprays can be used in organic farming.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Although it is not vigorous or vegetative, Shepardspurse is one of the most widespread and difficult to control broadleaf weeds worldwide. I used to think that it spread when there was more alfalfa here and because it is not controlled with 2,4-DB (Butyrate & Butoxone) but it has continued to spread in vegetable crops. It likely has become worse each year because of its growth habits more than its tolerance to herbicides. It germinates from on or just below the soil surface. Herbicides that move or are placed below the surface often miss it. It is difficult to control with Kerb, for instance, because it leaches easily with overhead sprinklers. The seed is less than 0.1 inch in diameter and moves easily in wind and water. It is very small, and the cotyledon leaves are hardly ever seen. By the time you see it, it is at the 3 or 4 leaf stage. It grows rapidly in a rosette that is low to the ground and often covered by the crop. Herbicide coverage is difficult. It soon puts up a thin seed stalk and several seed pods (“purses”). Unlike many annual broadleaf weeds, it can produce several generations in one season. It can grow year round in many regions but has a difficult time surviving the summers in the low desert.