Historically, our Areawide Pheromone and Sticky Trap monitoring for insects was terminated around the first of April as the produce season ended. Beginning 4 years ago however, we continued our Areawide Trapping Network throughout the summer to collect trapping data from all 15 areawide trap locations year-round. So why is this additional trapping data useful? For several reasons:
1) Understanding the activity of some of our key pests when produce is not grown during the summer may give us an indication of what to expect as the fall produce season begins. This may be particularly helpful for predicting moth flights and whitefly flights in August-September coinciding with early transplanting and direct seeded crops. Another example is keeping track of corn earworm which can unexpectedly show up near the beginning of fall harvests.
2) Trapping for pests during the summer has shown us that 2 of our more important produce pests are not caught in traps during the summer. We presume this is due to the absence of brassica crops and weeds for diamondback moth, and high daytime/nighttime temperatures lethal to aphids. The fact that trap catches resume in the fall supports our conclusion that these pests are absent in the summer, only to reenter the desert via winds and/or transplants in the fall. And finally,
3) It gives me something to do in the summer other than write reports and papers.
So, visit the Areawide Summer Trap Network if you’re curious what our key pests are up to.
Downy Mildew of Lettuce and 4th annual downy mildew field day
Downy mildew has always been one of the major problem for PCAs and growers in the desert southwest. The symptoms observed are green to yellow angular spots on the upper surface of the leaves and fluffy growth on the lower side (See Picture). Symptoms usually start from older leaves. As disease progresses the lesion turn brown and dry up and in some occasions the disease can become systemic causing dark discoloration of vascular tissue. Favorable condition for disease development:
The pathogen Bremia lactucae thrives in damp, cool condition, with moisture present on leaves. Spores are short-lived but dispersed efficiently by wind during moist period. Cultivated lettuce is the main host of the pathogen but it has also been reported to infectartichoke, cornflower and strawflower. Why is downy mildew difficult to manage?
One of the main reason that hinders the disease management is the complexity of the pathogen. Bremia lactucae consists of multiple races (pathotypes), and new races continue to occur as pathogen evolves. The pathogen is one of the fastest evolving plant pathogen. And each pathotypes have developed insensitivity to fungicides to different extent.
One of the best practice is to grow resistant cultivar, but there are limitations. As the pathogen is highly variable and dynamic, resistant cultivars are not a permanent solution as the pathogen overcomes the resistance by evolving into virulent strains and isolates.
Preventative application of fungicides are effective to some extent. Reducing leaf wetness and humidity by using drip or furrow irrigation can be helpful. However, weather condition like rain during cool weather as we had in past couple of weeks is conducive to development of epidemics and we have very little control on that matter.
4th ANNUAL DOWNY MILDEW FIELD DAY
Save the date for March 8, 10 AM- Noon for 4th annual field day (See attached flyer). 2.0 CA and AZ CEU have been applied for. Taco truck will be there at noon for lunch.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Contact herbicides are those that only affect the part of the weed that they “contact” They don’t move into or affect any other part of a plant. They were the first herbicides used and surprisingly, they still are better at controlling some weeds than any other products that have been developed. They usually control only small weeds with good coverage although some of them will kill large malva , Purslane and some other difficult to kill weeds. Goal, Sharpen, Treevix and Gramoxone, which are all contacts, will kill malva and purslane while systemic herbicides like Glyphosate and 2,4-D, misses them. Maestro or Bucril (Bromoxynil), also an old contact, will kill swinecress while many systemics like the growth regulators ,miss it. Glufosinate( Liberty, Rely) is a contact that is very broad spectrum and kills more grasses and broadleaves than many systemic herbicides. These all work very fast and in this age of immediate gratification ,you don’t have to wait long. Most have little soil residual activity (except Goal, Chateau and a couple others) Goal and Chateau are contacts but used mostly preemergence to the weeds. They “ contact” the weeds when they emerge at the surface. which is a benefit where double or triple cropping is common. Most( again except Goal) are not volatile but will cause pretty clear contact injury when the spray moves to sensitive crops. Paraquat was registered in 1959 and is still a very useful tool for desiccating plants. Many restrictions have been put on its use because of its toxicity to humans. Most contact herbicides are non-selective and will injure most living plant tissue. They are used selectively with directed spray or timing. Adjuvants are often required to increase absorption, spreading and sticking.