With the produce season essentially finished, it’s time to begin thinking about insect management in melons. Spring melon crops are rapidly growing, and so are insect pest populations. Cabbage loopers and leafminers are becoming evident in some areas, and PCAs should start ramping up their monitoring and sampling. More importantly, whitely populations are quietly becoming abundant on the spring melons of all sizes. Adults can easily be found on recently planted melons located at the Yuma Ag Center, and reports from local PCAs suggest that adult populations are beginning to show up on older plantings. As temperatures increase and crops/weeds mature, avoidance of excessive feeding from whitefly nymphs should be the primary concern on all melon types. Although CYSDV does occur in later spring melons, it is rarely yield limiting. But honeydew and sooty mold contamination on cantaloupes, mixed melons and watermelons can significantly reduce quality and marketability is whiteflies are not adequately controlled. Our research has shown that to prevent fruit yield and quality losses on spring melons, a foliar insecticide treatment should be applied on threshold; that is, when average adult numbers exceed 2 per leaf when averaged across an entire melon field. At this level of adult abundance, immature populations are beginning to colonize. Timing sprays based on the adult threshold has been shown to significantly reduce the chance of yield / quality losses during spring harvests. This threshold applies for the use of recommended IGRs (Courier, Knack, Cormoran, and Oberon), foliar applied neonicotinoids (Assail, Venom, Scorpion), neonicotinoid-like compounds (Sivanto prime and Transform), diamides, (Exirel and Minecto Pro) and the feeding disruptors (PQZ and Sefina). For more information on whitefly management and available insecticides, go to these documents on Insect Management on Spring Melons: Whiteflies and Whitefly Control Chart-Spring Melons -2024. Also, be aware of honey bees and other pollinators in or around melon fields. If bees are present, be sure to carefully read labels and determine bee safety of a product before making an application in a melon field. If applications are necessary during bloom, only apply a product that is considered bee safe (e.g., PQZ, Sefina, Sivanto, Assail). We also recommend that insecticides only be applied when honeybees are not actively working in the field (e.g. 10:00 pm – 3: 00 am).
Lettuce dieback is a soil-borne disease caused by two closely related viruses from the family TombusviridaeTomato Bushy Stunt Virus (TBSV) and Lettuce Necrotic Stunt Virus (LNSV) that has been reclassified as Moroccan Pepper Virus (MPV). The disease has been observed throughout the main lettuce producing areas of California and Arizona.
This year we have been receiving some samples that looked like lettuce dieback disease. The samples came positive for a new virus named as Lettuce dieback associated virus and negative for tomato bushy stunt virus. In the past we have seen symptoms in resistant cultivars (with Tvr1 gene) which suggests that the new virus is involved in the symptomology.
The virus is soilborne, and has been found to have more correlation with the dieback disease more than Tomato bushy stunt virus. Flooding or poor drainage, high salinity, plant stress, and soil saturation have been associated with high incidence of virus .
If you have plants showing symptoms of Tomato bushy stunt virus, please bring the samples to Yuma Plant Health Clinic for diagnosis.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Contact herbicides are those that only affect the part of the weed that they “contact” They don’t move into or affect any other part of a plant. They were the first herbicides used and surprisingly, they still are better at controlling some weeds than any other products that have been developed. They usually control only small weeds with good coverage although some of them will kill large malva , Purslane and some other difficult to kill weeds. Goal, Sharpen, Treevix and Gramoxone, which are all contacts, will kill malva and purslane while systemic herbicides like Glyphosate and 2,4-D, misses them. Maestro or Bucril (Bromoxynil), also an old contact, will kill swinecress while many systemics like the growth regulators ,miss it. Glufosinate( Liberty, Rely) is a contact that is very broad spectrum and kills more grasses and broadleaves than many systemic herbicides. These all work very fast and in this age of immediate gratification ,you don’t have to wait long. Most have little soil residual activity (except Goal, Chateau and a couple others) Goal and Chateau are contacts but used mostly preemergence to the weeds. They “ contact” the weeds when they emerge at the surface. which is a benefit where double or triple cropping is common. Most( again except Goal) are not volatile but will cause pretty clear contact injury when the spray moves to sensitive crops. Paraquat was registered in 1959 and is still a very useful tool for desiccating plants. Many restrictions have been put on its use because of its toxicity to humans. Most contact herbicides are non-selective and will injure most living plant tissue. They are used selectively with directed spray or timing. Adjuvants are often required to increase absorption, spreading and sticking.
Area wide Insect Trapping Network (January 22, 2025)
Results of pheromone and sticky trap catches can be viewedhere.
Corn earworm: CEW moth counts down in most over the last month, but activity in Wellton; about average for mid-January.
Beet armyworm: Moth trap counts decreased in all areas in the last 2 weeks but appear to remain active in some areas, and average for this time of the year.
Cabbage looper: Moths remain active in the past 2 weeks, and average for this time of the season.
Diamondback moth: Adults increased in several locations last, particularly in the N. Yuma Valley. Overall, below average for January.
Whitefly: Adult movement remains low in all areas, consistent with previous years.
Thrips: Thrips adult movement increased slightly in past 2 weeks, overall activity below average for January.
Aphids: Winged aphids are still actively moving. About average for January.
Leafminers: Adult activity down in most locations, below average for this time of season.