You may have noticed in the past week or so the increase in insect activity on local crops. In general, insect activity has been relatively light to moderate this spring largely due to the cool weather we experienced in March and April. The exception has been the widespread incidence of seedcorn maggots affecting melon and cotton stands over the past month. The occurrence of the maggots was consistent with the cool and wet conditions we experienced this spring, and the addition of extra organic matter (i.e., manure, heavy produce residue) in fields did not help matters. Within the past week, numbers of whitefly adults and cabbage looper larvae have increased on our melon crops at the Yuma Ag Center. As we start to experience the hot and dry weather typical in May and June one can expect insect activity to increase. That is because local weather patterns have a significant impact on the abundance of insect pests in our crops. Components of weather, mainly temperature and moisture, can either promote insect population growth or cause populations to decline. For a more detailed explanation on the impact of weather on insects go to this link.
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Spinach ‘Revere’ was seeded, then sprinkler-irrigated to germinate seed Jan 18, 2024 on beds with 84 in. between bed centers and containing 30 lines of seed per bed. All irrigation water was supplied by sprinkler irrigation. Treatments were replicated four times in a randomized complete block design. Replicate plots consisted of 15 ft lengths of bed separated by 3 ft lengths of nontreated bed. Treatments were applied with a CO2backpack sprayer that delivered 50 gal/acre at 40 psi to flat-fan nozzles.
Month
Max
Min
Average
Rainfall
January
68
42
54
1.14 in
February
73
47
59
0.50 in
March
77
50
63
0.31 in
Downy mildew (caused by Peronospora farinosa f. sp. spinaciae) was first observed in plots on Feb 19 and final reading was taken on February 26, 2024. Spray date for each treatments are listed in excel file with the results. Disease severity was recorded by determining the percentage of infected leaves present within three 1-ft2 areas within each of the four replicate plots per treatment. The number of spinach leaves in a 1-ft2 area of bed was approximately 144.
The data (found in the accompanying Excel file) illustrate the degree of disease reduction obtained by applications of the various tested fungicides. Products that provided effective control against the disease include Orondis ultra, Thrive 4 M, Fungout, Cevya, Eject and Zampro. No phytotoxicity was observed in any of the treatments in this trial.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Contact herbicides are those that only affect the part of the weed that they “contact” They don’t move into or affect any other part of a plant. They were the first herbicides used and surprisingly, they still are better at controlling some weeds than any other products that have been developed. They usually control only small weeds with good coverage although some of them will kill large malva , Purslane and some other difficult to kill weeds. Goal, Sharpen, Treevix and Gramoxone, which are all contacts, will kill malva and purslane while systemic herbicides like Glyphosate and 2,4-D, misses them. Maestro or Bucril (Bromoxynil), also an old contact, will kill swinecress while many systemics like the growth regulators ,miss it. Glufosinate( Liberty, Rely) is a contact that is very broad spectrum and kills more grasses and broadleaves than many systemic herbicides. These all work very fast and in this age of immediate gratification ,you don’t have to wait long. Most have little soil residual activity (except Goal, Chateau and a couple others) Goal and Chateau are contacts but used mostly preemergence to the weeds. They “ contact” the weeds when they emerge at the surface. which is a benefit where double or triple cropping is common. Most( again except Goal) are not volatile but will cause pretty clear contact injury when the spray moves to sensitive crops. Paraquat was registered in 1959 and is still a very useful tool for desiccating plants. Many restrictions have been put on its use because of its toxicity to humans. Most contact herbicides are non-selective and will injure most living plant tissue. They are used selectively with directed spray or timing. Adjuvants are often required to increase absorption, spreading and sticking.