Historically, our Areawide Pheromone and Sticky Trap monitoring for insects was terminated around the first of April as the produce season ended. Beginning 4 years ago however, we continued our Areawide Trapping Network throughout the summer to collect trapping data from all 15 areawide trap locations year-round. So why is this additional trapping data useful? For several reasons:
1) Understanding the activity of some of our key pests when produce is not grown during the summer may give us an indication of what to expect as the fall produce season begins. This may be particularly helpful for predicting moth flights and whitefly flights in August-September coinciding with early transplanting and direct seeded crops. Another example is keeping track of corn earworm which can unexpectedly show up near the beginning of fall harvests.
2) Trapping for pests during the summer has shown us that 2 of our more important produce pests are not caught in traps during the summer. We presume this is due to the absence of brassica crops and weeds for diamondback moth, and high daytime/nighttime temperatures lethal to aphids. The fact that trap catches resume in the fall supports our conclusion that these pests are absent in the summer, only to reenter the desert via winds and/or transplants in the fall. And finally,
3) It gives me something to do in the summer other than write reports and papers.
So, visit the Areawide Summer Trap Network if you’re curious what our key pests are up to.
The soft-rot bacterium, Erwiniacarotovora subsp. carotovora (syn.= Pectobacteriumcarotovorum subsp. carotovorum), enters through growth cracks or wounds caused by cold temperatures, insects, other disease organisms, or by mechanical means. Under warm, humid conditions, uninjured tissue may become infected through natural openings. Prolonged moisture from rain or irrigation and mild temperatures encourage disease development. Insects, tools, rain, clothing, or affected plant tissue can spread the bacteria. The bacteria survive in soil and plant debris.
Symptoms appear as small, water-soaked areas and enlarge rapidly. Tissue becomes soft and mushy, and within a few days the affected plant part may collapse. An offensive odor usually is present.
Management:
Cultural:
Set out plants in rows to allow good air drainage.
Cultivate carefully to minimize injuring plants.
Control frequency and source of irrigation water.Avoid frequent irrigation during head development. Time irrigation to allow the head to dry rapidly. Avoid stagnant water sources.
Clean and spray storage walls and floors with copper sulfate solution (1 lb/5 gal water). Bactericides such as Clorox, Lysol, and quaternary ammonium products also are effective.
In storage, use a buffering material such as straw or paper to prevent injury to the heads.
Keep storage house humidity between 90% and 95% and the temperature between 32°F and 39°F.
Chemical control
· Cueva at 0.5 to 2 gal/100 gal water on 7- to 10-day intervals. May be applied on the day of harvest. 4-hr reentry.
Cease at 3 to 6 quarts in 100 gal water. For greenhouse plants only. Preharvest interval is 0 days. 4-hr reentry.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Herbicide resistant weeds have received a lot of attention in recent years. It is often misunderstood. Three of the most misunderstood concepts regarding herbicide resistance are: 1- Weed tolerance and weed selection are not resistance,2- Weed resistance is not universal and does not affect every weed of a certain species from field to field or within a field and weed resistance often takes much longer than insect resistance that is more common and occurs faster.
No Herbicide controls all weeds. Those weeds that are not controlled are tolerant. They never were controlled by that particular herbicide and they are often selected for and become more prevalent over time if the same herbicide is used. Resistant weeds, on the other hand, were controlled at one time by a particular herbicide and have naturally developed a trait that stops the herbicide from working. These resistant weeds survive from generation to generation and become more prevalent over time.
Weed resistance does not occur in all weeds in a field at the same time. It can be just one plant of trillions in a field. As this plant survives the herbicide and goes to seed it becomes more widespread in the field and in other fields. We conducted a trial in Parker last year where sprangletop survived Glyphosate in one field and was killed by the same treatment down the road. If your neighbor has resistant weeds it doesn’t mean that you do too.
Lastly, insect resistance to insecticides has occurred in this region for many years and was the first exposure that many pest control advisers and growers had to pesticide resistance. The principals are the same although insects generally produce multiple generations per season and mutations that facilitate resistance occur faster than for weeds. Annual weeds often produce only one or two generations per season and resistance takes much longer.