Our annual Lettuce Crop Losses Workshop was recently held in April and the results of the surveys reveal some interesting trends in insecticide usage on desert head lettuce. In general, the most commonly used insecticides in fall and spring lettuce correspond directly to the key pests that typically occur during these growing periods. When compared by class of chemistry using the IRAC mode of action classification system, the pyrethroids, applied both as foliar sprays and chemigations, were by far the most commonly used insecticide class (Tables 1, 2 and 3). This makes sense because they are one of the few inexpensive, broad spectrum insecticides still available for effective control of beetles, crickets and plant bugs. Nonetheless, over the past few years pyrethroid usage has been steadily declining, as has usage of organophospahates, and carbamates where Lannate and Orthene continue to be the primary compounds used in desert lettuce. The spinosyns remain the second most commonly used class of insecticides, where greater than 90% of the lettuce acreage was treated with Radiant and Success in 2011-2012. Their activity against both lepidopterous larvae and thrips make them a good fit in desert lettuce. The third most commonly used class of chemistry in fall and spring lettuce are the neonicotinoids driven primarily by at-plant, soil uses for sucking insects. Estimates this season showed that PCAs used generic imidacloprid and Admire Pro on a larger percentage of acres this season compared to last year. Estimates of Diamide usage (Coragen, Voliam Xpress, Vetica) showed that PCAs applied more of this chemistry in 2011-2012 than the previous season, and estimates further suggest that growers are slowly beginning to incorporate at-planting, soil uses of Coragen into their programs. Ketoenol usage (Movento) on fall lettuce was down compared to 2010, but usage as an aphicide on spring lettuce remains about the same. From an IPM perspective, the industry has made great strides in minimizing environmental impacts in lettuce production by continuing to incorporate the newer insecticides into their insect management programs. And for the second season in a row, PCAs treated a greater percentage of their acreage with selective, reduced-risk products than with the broadly toxic, older chemistries (pyrethroids, organophosphates, carbamates). To view a summary of the estimated insecticide usage by chemical class, as well as the 15 most commonly used insecticides on head lettuce during the past two growing season, go to Insecticide Use in Arizona Head Lettuce.
Downy mildew has always been one of the major problem for PCAs and growers in the desert southwest. The symptoms observed are green to yellow angular spots on the upper surface of the leaves and fluffy growth on the lower side (See Picture). Symptoms usually start from older leaves. As disease progresses the lesion turn brown and dry up and in some occasions the disease can become systemic causing dark discoloration of vascular tissue.
Favorable condition for disease development: The pathogen Bremia lactucae thrives in damp, cool condition, with moisture present on leaves. Spores are short-lived but dispersed efficiently by wind during moist period. Cultivated lettuce is the main host of the pathogen but it has also been reported to infect artichoke, cornflower and strawflower.
Why is downy mildew difficult to manage? One of the main reason that hinders the disease management is the complexity of the pathogen. Bremia lactucae consists of multiple races (pathotypes), and new races continue to occur as pathogen evolves. The pathogen is one of the fastest evolving plant pathogen. And each pathotypes have developed insensitivity to fungicides to different extent.
One of the best practice is to grow resistant cultivar, but there are limitations. As the pathogen is highly variable and dynamic, resistant cultivars are not a permanent solution as the pathogen overcomes the resistance by evolving into virulent strains and isolates.
Preventative application of fungicides are effective to some extent. Reducing leaf wetness and humidity by using drip or furrow irrigation can be helpful. However, weather condition like rain during cool weather as we had in past couple of weeks is conducive to development of epidemics and we have very little control on that matter.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Herbicide resistant weeds have received a lot of attention in recent years. It is often misunderstood. Three of the most misunderstood concepts regarding herbicide resistance are: 1- Weed tolerance and weed selection are not resistance,2- Weed resistance is not universal and does not affect every weed of a certain species from field to field or within a field and weed resistance often takes much longer than insect resistance that is more common and occurs faster.
No Herbicide controls all weeds. Those weeds that are not controlled are tolerant. They never were controlled by that particular herbicide and they are often selected for and become more prevalent over time if the same herbicide is used. Resistant weeds, on the other hand, were controlled at one time by a particular herbicide and have naturally developed a trait that stops the herbicide from working. These resistant weeds survive from generation to generation and become more prevalent over time.
Weed resistance does not occur in all weeds in a field at the same time. It can be just one plant of trillions in a field. As this plant survives the herbicide and goes to seed it becomes more widespread in the field and in other fields. We conducted a trial in Parker last year where sprangletop survived Glyphosate in one field and was killed by the same treatment down the road. If your neighbor has resistant weeds it doesn’t mean that you do too.
Lastly, insect resistance to insecticides has occurred in this region for many years and was the first exposure that many pest control advisers and growers had to pesticide resistance. The principals are the same although insects generally produce multiple generations per season and mutations that facilitate resistance occur faster than for weeds. Annual weeds often produce only one or two generations per season and resistance takes much longer.
Corn earworm:
CEW moth captures have steadily decreased over the past 2 weeks, and areawide about average for late-October.
Beet armyworm:
Trap counts reached their highest levels so far this season, particularly in Tacna, Wellton and Yuma Valley, and about average for late October.
Cabbage looper:
Cabbage looper numbers decreased areawide, and are still below average for this time of the year.
Diamondback moth:
Sporadic DBM activity in low numbers throughout the area, trending well below average for late October.
Whitefly:
Adult movement increased in the past 2 weeks and above average for late October.
Thrips:
Thrips adult activity peaked in the last two weeks, and trending below average in October.
Aphids:
Winged adults continue to be captured for the season, consistent with heavy winds from W-NW. Aphid captures thus far have been well below average.
Leafminers:
Adult activity decreased in most areas, and trending about average for late October.