With the produce season essentially finished, it’s time to begin thinking about insect management in melons. Spring melon crops are rapidly growing, and so are insect pest populations. Cabbage loopers and leafminers are becoming evident in some areas, and PCAs should start ramping up their monitoring and sampling. More importantly, whitely populations are quietly becoming abundant on the spring melons of all sizes. Adults can easily be found on recently planted melons located at the Yuma Ag Center, and reports from local PCAs suggest that adult populations are beginning to show up on older plantings. As temperatures increase and crops/weeds mature, avoidance of excessive feeding from whitefly nymphs should be the primary concern on all melon types. Although CYSDV does occur in later spring melons, it is rarely yield limiting. But honeydew and sooty mold contamination on cantaloupes, mixed melons and watermelons can significantly reduce quality and marketability is whiteflies are not adequately controlled. Our research has shown that to prevent fruit yield and quality losses on spring melons, a foliar insecticide treatment should be applied on threshold; that is, when average adult numbers exceed 2 per leaf when averaged across an entire melon field. At this level of adult abundance, immature populations are beginning to colonize. Timing sprays based on the adult threshold has been shown to significantly reduce the chance of yield / quality losses during spring harvests. This threshold applies for the use of recommended IGRs (Courier, Knack, Cormoran, and Oberon), foliar applied neonicotinoids (Assail, Venom, Scorpion), neonicotinoid-like compounds (Sivanto prime and Transform), diamides, (Exirel and Minecto Pro) and the feeding disruptors (PQZ and Sefina). For more information on whitefly management and available insecticides, go to these documents on Insect Management on Spring Melons: Whiteflies and Whitefly Control Chart-Spring Melons -2024. Also, be aware of honey bees and other pollinators in or around melon fields. If bees are present, be sure to carefully read labels and determine bee safety of a product before making an application in a melon field. If applications are necessary during bloom, only apply a product that is considered bee safe (e.g., PQZ, Sefina, Sivanto, Assail). We also recommend that insecticides only be applied when honeybees are not actively working in the field (e.g. 10:00 pm – 3: 00 am).
With the cole crops season approaching, seedlings of cauliflower, cabbage, broccoli etc are currently being grown in greenhouses. Black rot is a disease in cole crops caused by bacterium, Xanthomonas campestris pv. Campestris. The disease is a bigger problem in greenhouse than in fields. Greenhouse sanitation is important and includes keeping plant tissue from previous crops out of the transplant production area, as any soil or plant residue could be harboring bacteria and other pathogens. Use new plug trays or clean used trays with heat or a greenhouse disinfectant that is refreshed frequently. Visually assess or test young plants for black rot before transplanting.
The pathogen can enter the field on transplants or seeds, and can stay in the soil for over a year where it survives on debris and weeds in the Brassicaceae family. The bacteria move primarily with water and can enter the plant through pores naturally present on the leaf surface. It can also be spread by workers and equipment moving through the field/greenhouse, and can enter the leaves through damage caused by wind, insects and other mechanical injuries. The bacteria need a temperature of 77 degrees and above. While it may seem like the weather in desert is not humid enough for bacteria to become an epidemic, it is not something that should be ignored. The microclimate in the field with the crop canopy being dense, foggy mornings, increased field activity can be conducible for disease development.
Disease management include getting rid of infected plants/tissue, increasing distance between fields and choosing well-drained, controlling weeds especially in mustard family such shepherd’s purse, wild mustard, pepper weed etc. Soil fumigation is effective but may not be economically feasible. Best management practice starts with disease-free seed; hot water treatment can reduce the likelihood that the bacteria will enter the field through the seed. Starting with healthy transplant is equally important.
Controlling Fusarium Wilt of Lettuce Using Steam Heat – Trial Initiated
Earlier this week, we initiated a trial examining the use of band steam for controlling Fusarium wilt of lettuce. The premise behind this research is to use steam heat to raise soil temperatures to levels sufficient to kill soilborne pathogens. For Fusarium oxysporum f. sp. lactucae, the pathogen which causes Fusarium wilt of lettuce, the required temperature for control is generally taken to be > 140°F for 20 minutes. Soil solarization, where clear plastic is placed over the crop bed during the summer, exploits this concept. The technique raises soil surface temperatures to 150-155˚F, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
In our trials, we are using steam heat to raise soil temperatures. Steam is delivered by a 35 BHP steam generator mounted on a custom designed elongated bed shaper (Fig. 1). Preliminary results were encouraging. The device was able to increase the temperature of the top 3” of soil to over 180°F at a travel speed of 0.5 mph as shown in this video of the machine in action (shown below). These temperatures exceed that of those known to control pathogens responsible for causing Fusarium wilt of lettuce (> 140°F for 20 minutes).
Stay tuned for final trial results and reports on the efficacy of using steam heat to control Fusarium wilt of lettuce.
If you are interested in evaluating the technique on your farm, please contact me. We are seeking additional sites with a known history of Fusarium wilt of lettuce disease incidence to test the efficacy and performance of the device.
References
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Acknowledgements
This project is sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
A special thank you is extended to Cory Mellon and Mellon Farms for allowing us to conduct this research on their farm.
Weeds are one of the most visible of all agricultural pests. They can’t move or hide and once established often stick up over the crop. Just one weed in a 10 acre field is annoying to look at. With insects and diseases, the damage is often more visible than the pest. That is not the case with weeds. A moderate weed infestation is approximately 10 weeds per square foot. If a herbicide produces 90% control, that leaves 1 weed per square foot or 43 weeds per acre. Without an untreated check, this can look like the herbicide failed! It is easy to leave an untreated spot in a field and it is well worth doing. Many applicators do so unintentionally because of skips, powerlines and other causes. They help determine crop injury and weed control. Here are some examples of what various levels of control looked like from one of our cole crop trials: