We have historically ended our Areawide Pheromone and Sticky Trap monitoring for insects around the first of April as the produce season ends. Beginning last year however, we continued our Areawide Trapping Network throughout the summer and are doing so now to continue to collect trapping data from all 16 areawide trap locations year-round. So why is this additional trapping data useful? For several reasons. First, understanding the activity of some of our key pests when produce is not available (during the summer) may give us an indication of what to expect as the fall produce season begins. This may be particularly helpful for predicting moth flights and whitefly flights in August-September coinciding with early transplanting and direct seeded crops. Another example is keeping track of corn earworm which can unexpectedly show up near the beginning of fall harvests. Secondly, trapping for pests during the summer has shown us that 2 of our more important produce pests are not caught in traps during the summer. We presume this is due to the absence of brassica crops and weeds for diamondback moth, and high daytime temperatures lethal to aphids. The fact that trap catches resume in the fall supports our conclusion that these pests are absent in the summer, only to reenter the desert via winds and/or transplants in the fall. And finally, it gives me something to do in the summer. So, visit the Areawide Summer Trap Network if you’re curious what our key pests are up to. We also taken on another interesting project to monitor thrips activity during the summer. This involves plant sampling using a dislodgement sampling method (beat pan) to determine the relative abundance of thrips adults and larvae on alfalfa, cotton, melons, wheat, Sudan grass, and weeds. This is being conducted to supplement our yellow sticky trap data that only indicates thrips adult flight movement an area. With this plant sampling we should be able to determine the primary host plants thrips are colonizing in the cropping season during the long hot summer. We are also trying to determine whether these crops allow for the reproduction of thrips. So far, all the crops and weeds we have sampled have shown that thrips will reproduce and complete their life cycle on them. This is important, particularly for weeds, as we are trying to determine whether INSV can be survive the summer in the absence of lettuce. It is also important because it allows us to determine potential exposure of thrips to key insecticides like Radiant and Lannate for resistance management purposes. These crops essentially serve as untreated refugia that likely sustains insecticide susceptibility and is the reason these products are still effective against thrips. We will be conducting this work throughout the summer, as well as through next produce season. We will be providing data in each Veg IPM update. For the most recent sampling data see our Areawide Thrips Monitoring.As always, if you have any ideas on thrips monitoring or insect trapping, we’d be glad to listen and discuss. As my dad used to say, “to solve the problem, you must first understand the problem”.
In the past couple of weeks, the reports of INSV in fields has increased dramatically. INSV has been found in fields in Yuma/Gila Valley, Wellton, Tacna, Roll, and Imperial Valley.
PCAs have reported thrips pressure as low this year and most fields have infection less than 1% but some fields have been reported to have higher incidence. The virus has been detected in direct seeded field as well as transplants imported from Salinas, CA.
Impatiens necrotic spot virus, also known as INSV is a tospovirus closely related to Tomato spotted wilt virus. Infected plants usually have leaves with brown to dark brown necrotic areas. Sometimes the symptoms may be confused with “chemical burn”. As necrosis progresses the leaf browns or die out. Plants infected in early stage may become stunted and die, or become unmarketable.
What makes this virus of high economic importance?
The plants become unmarketable which is the ultimate economic loss. But there are factors that facilitate the virus outbreak.
The first one is efficient transmission by its vector (s). The virus is transmitted by western flower thrips, Frankliniella occidentalis.
If you remember our virus transmission series in past newsletters, thrips transmit viruses in persistent propagative manner. Insects have to feed on virus infected plants for hours/days to acquire the virus and the virus has to incubate for hours/days in the insect. After insect can transmit the virus throughout its lifespan. The virus can multiply in the vector system and often times the virus particles are also passed on to the insect offspring. Adult thrips can transmit these viruses only if acquired in the larval stage of development. Larval thrips will feed on a virus-infected plant, pupate, and emerge as a winged adult capable of transmitting the virus. The thrips then will carry the virus for life.
The next contributing factor is host range. INSV infects large number of ornamental and vegetable plants. We are talking 600 species of plants that are susceptible to INSV and thrips love flowers.
While it may not be practical to remove all your ornamentals in fear of INSV, it is definitely practical to monitor thrips population in your field. As the legend says “When in doubt, scout”.
And if you need diagnosis, drop the samples in the clinic! But then if you have immunostrips, you don’t have to make the drive to the Ag Center!
DIY testing: Impatiens necrotic spot virus (INSV)
As visual diagnosis of the virus is confusing and could even be misleading at times, it is very important to confirm a symptomatology via clinical diagnosis.
The good news is there are tools available for quick and easy diagnosis of INSV. You can order the immunostrips from Agdia (https://orders.agdia.com/agdia-immunostrip-for-insv-isk-20501)
The immunostrips cost anywhere from $5-20 depending on how much you buy. They perform better when they stay refrigerated until just before use.
Immunostrips are quick and easy tool to use. The kit comes with a buffer bag and immunostrip.
1. You need very little tissue for diagnosis. The rule of thumb is plant tissue the size of your thumbnail.
2. Then you put the tissue in the buffer bag and gently grind it with something blunt (you can even use a sharpie/marker as shown in picture below)
3. Let it sit for a minute and Insert the inmmunostrip on the side of the mesh bag in the tissue blended solution. You will see the plant sap going up in the immunostrip.
4. Results: 2 bands means positive and one band means negative!
One band means that the positive control worked which means the system worked. Sometimes you see no bands at all. This means the system did not work and you have to repeat the test.
If you are seeing symptoms in your field please let Bindu Poudel-Ward know via email (bpoudel@email.arizona.edu or text (928-920-1110). Please keep a note of weed species you are consistently seeing in your fields and keep the thrips population under check.
Controlling Fusarium Wilt of Lettuce Using Steam Heat – Trial Initiated
Earlier this week, we initiated a trial examining the use of band steam for controlling Fusarium wilt of lettuce. The premise behind this research is to use steam heat to raise soil temperatures to levels sufficient to kill soilborne pathogens. For Fusarium oxysporum f. sp. lactucae, the pathogen which causes Fusarium wilt of lettuce, the required temperature for control is generally taken to be > 140°F for 20 minutes. Soil solarization, where clear plastic is placed over the crop bed during the summer, exploits this concept. The technique raises soil surface temperatures to 150-155˚F, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
In our trials, we are using steam heat to raise soil temperatures. Steam is delivered by a 35 BHP steam generator mounted on a custom designed elongated bed shaper (Fig. 1). Preliminary results were encouraging. The device was able to increase the temperature of the top 3” of soil to over 180°F at a travel speed of 0.5 mph as shown in this video of the machine in action (shown below). These temperatures exceed that of those known to control pathogens responsible for causing Fusarium wilt of lettuce (> 140°F for 20 minutes).
Stay tuned for final trial results and reports on the efficacy of using steam heat to control Fusarium wilt of lettuce.
If you are interested in evaluating the technique on your farm, please contact me. We are seeking additional sites with a known history of Fusarium wilt of lettuce disease incidence to test the efficacy and performance of the device.
References
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Acknowledgements
This project is sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
A special thank you is extended to Cory Mellon and Mellon Farms for allowing us to conduct this research on their farm.
Weeds are one of the most visible of all agricultural pests. They can’t move or hide and once established often stick up over the crop. Just one weed in a 10 acre field is annoying to look at. With insects and diseases, the damage is often more visible than the pest. That is not the case with weeds. A moderate weed infestation is approximately 10 weeds per square foot. If a herbicide produces 90% control, that leaves 1 weed per square foot or 43 weeds per acre. Without an untreated check, this can look like the herbicide failed! It is easy to leave an untreated spot in a field and it is well worth doing. Many applicators do so unintentionally because of skips, powerlines and other causes. They help determine crop injury and weed control. Here are some examples of what various levels of control looked like from one of our cole crop trials: