To my surprise, the diamondback moth (DBM) has already returned to the desert, and its timely occurrence happens to coincide with the establishment of early brassica transplants. I was not anticipating this early of an arrival; but they are definitely here. We began to pick up a few DBM moths in traps during the week of Aug 19-26. The last moths caught prior to this was in early July near a brassica seed crop. Then during the week of Aug 26-Sep 2, traps captured a higher number of diamondback moth adults in several areas. A total of 22 DBM adults were caught in 7 traps during that week. May not sound like a lot, but more than what I expected. In all but one location, the moths were caught in traps located adjacent to newly transplanted cauliflower or cabbage fields (See DBM Trap Network). Moreover, since Monday we have seen a sharp increase in moths captured, particularly in Dome Valley and Wellton. At one trap location in Wellton, I counted 31 moths captured over 2 nights. There have also been a number of reports from PCAs in the past 2 days of adult DBM flying within fields. The interesting thing is that no one has reported any eggs, larvae or feeding damage on transplants in the fields where these adults are being found. Could be that the Verimark tray drenches are preventing DBM colonizarition so far. Time will tell. This early moth activity seems unusual to me, but maybe it’s because I’ve been looking so hard for them. The key question is where did these adults come from? The answer is important as it may indicate whether we are dealing with the same diamide resistant population we battled in 2016-17, or a completely different population with resistance to some other chemistry or nothing at all. In my view, there are 3 potential points of origin for these DBM adults. 1) Local Residents - I’ve always assumed DBM would not be capable of spending the summer (mid-June to mid-August) in the desert because of the lack of a suitable host. Our trapping data appears to support this hypothesis since we caught no moths during this period. But don’t know for sure. 2) Hitchhikers – another potential source could be the transplants themselves. Very possible, and can’t be ruled out, but the transplants where moths have been reported/captured have originated from six different nurseries so far (4 from coastal CA and 2 local). Have not picked up any DBM adults in direct seeded broccoli yet, but time may tell. 3) Immigrants - We know that DBM are capable of migrating long distances in winds, and given the widespread occurrences of the moths so far, it may be possible that recent storms may be bringing some of them into the area from the south. It may just be a coincidence that the large increase in moth activity in the last 2-3 days follows a tropical storm disturbance that moved through the area this pest weekend? We may never know the origin, but trust me we will continue to investigate. The bottom line: PCAs and growers should anticipate an early occurrence of DBM this season and prepare accordingly. For more information of managing DBM on fall crops see Guidelines for Diamondback Moth Management in Fall Cole Crops.
In response to the recent outbreaks of Diamondback moth (DBM) , Plutella xylostella in Yuma, we have established a pheromone trap network designed to monitor the activity and movement of adult populations of DBM. PCAs have had difficulty controlling DBM in cabbage, broccoli and cauliflower since October. Traps have been placed in Roll, Wellton, Dome Valley, Gila Valley and Yuma Valley in locations where cole crops are presently being grown or in areas where infestations were known to occur this fall.
We are on the final section of virus transmission. Virus transmission by insects is one of the most efficient and economically important transmission in agriculture. When you have insects in your crops, not only you are losing your crops because of feeding/chewing by insects, a lot of insects also act as a vector of plant viruses.
Seven out of 29 orders of insect feeding on living green land plants are vectors of plant viruses.
Insect transmit viruses in 4 distinct modes:
Non persistent transmission: The insects can acquire the virus in a matter if seconds/minutes and they are immediately viruliferous. The virus in retained in the stylet of the insect and are transmitted to the next plant the insect feeds on. The virus is retained in the vector only for few minutes and is lost after insect molting. Most viruses transmitted by aphids are non persistent. So when you see few aphids in your melon field and see cucumber mosaic virus symptoms 1-2 weeks later in your field, don’t be surprised. Aphids are efficient vectors, and since viruses are systemic it takes anywhere from few days to 2-3 weeks for the plants to show symptoms. Thus it is very important to manage insects in the field even if you don’t think the ‘pressure’ is not as high.
Semi-persistent transmission: The insects can acquire the virus in minutes/hours and there is no latent (incubation) period in the insect. The virus can stay in the insects foregut for hours and is lost after insect molting. Some species of aphids and whiteflies fall in this category. Example: Cucurbit yellow stunting disorder virus in melons transmitted by whiteflies.
Persistent circulative: Insects have to feed on virus infected plants for hours/days to acquire the virus and the virus has to incubate for hours/days in the insect. After insect can transmit the virus for weeks. Virus can be present in the vectors hemolymph but there is no multiplication of virus in the insect body. Vectors in this transmission includes: Aphids, leafhopper, whiteflies, treehopper.
Example: Beet curly top virus transmission by beet leafhopper
Persistent propagative: Insects have to feed on virus infected plants for hours/days to acquire the virus and the virus has to incubate for hours/days in the insect. After insect can transmit the virus throughout its lifespan. The virus can multiply in the vector system and often times the virus particles are also passed on to the insect offspring. Tomato spotted wilt virus is transmitted on persistent propagative manner by 9 different species on thrips.
Save the Date : 2024 Plant Pathology Workshop
When: August 29th 8AM-12 PM ( breakfast and Lunch provided by Gowan Company and BASF)
Where: Yuma Ag Center, 6425 W 8th Street
What will covered: Plant Pathology program Updates, past season field trial results (we
have some exciting results to share), Q&A to help better Plant pathology program,
Industry panel discussion for all your industry related questions! See you in few weeks!
Controlling Fusarium Wilt of Lettuce Using Steam Heat – Trial Initiated
Earlier this week, we initiated a trial examining the use of band steam for controlling Fusarium wilt of lettuce. The premise behind this research is to use steam heat to raise soil temperatures to levels sufficient to kill soilborne pathogens. For Fusarium oxysporum f. sp. lactucae, the pathogen which causes Fusarium wilt of lettuce, the required temperature for control is generally taken to be > 140°F for 20 minutes. Soil solarization, where clear plastic is placed over the crop bed during the summer, exploits this concept. The technique raises soil surface temperatures to 150-155˚F, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
In our trials, we are using steam heat to raise soil temperatures. Steam is delivered by a 35 BHP steam generator mounted on a custom designed elongated bed shaper (Fig. 1). Preliminary results were encouraging. The device was able to increase the temperature of the top 3” of soil to over 180°F at a travel speed of 0.5 mph as shown in this video of the machine in action (shown below). These temperatures exceed that of those known to control pathogens responsible for causing Fusarium wilt of lettuce (> 140°F for 20 minutes).
Stay tuned for final trial results and reports on the efficacy of using steam heat to control Fusarium wilt of lettuce.
If you are interested in evaluating the technique on your farm, please contact me. We are seeking additional sites with a known history of Fusarium wilt of lettuce disease incidence to test the efficacy and performance of the device.
References
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Acknowledgements
This project is sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
A special thank you is extended to Cory Mellon and Mellon Farms for allowing us to conduct this research on their farm.
Weeds are one of the most visible of all agricultural pests. They can’t move or hide and once established often stick up over the crop. Just one weed in a 10 acre field is annoying to look at. With insects and diseases, the damage is often more visible than the pest. That is not the case with weeds. A moderate weed infestation is approximately 10 weeds per square foot. If a herbicide produces 90% control, that leaves 1 weed per square foot or 43 weeds per acre. Without an untreated check, this can look like the herbicide failed! It is easy to leave an untreated spot in a field and it is well worth doing. Many applicators do so unintentionally because of skips, powerlines and other causes. They help determine crop injury and weed control. Here are some examples of what various levels of control looked like from one of our cole crop trials: