Our annual Lettuce Crop Losses Workshop was held in April and the results of the surveys continue to show interesting trends in insecticide usage on desert head lettuce. In general, the most commonly used insecticides in fall and spring lettuce correspond directly to the key pests that typically occur during these growing periods. Overall, the pyrethroids, applied as foliar sprays and sprinkler chemigations, were the most commonly used insecticide class. No surprise there. Over the past 12 years, pyrethroid usage has remained consistently high. Although the overall use of OP/carbamates continues to decline, Lannate (methomyl) usage was up on spring lettuce this season due to heavy thrips pressure. Along with acephate, these older compounds remain important rotational alternatives for Radiant. The spinosyns remain the second most commonly used class of insecticides, where greater than 95% of the lettuce acreage was treated with Radiant or Success in 2015-16. Their use against both lepidopterous larvae and thrips has remained steady over the past 12 years, averaging over 2 sprays per treated acre. Foliar uses of the Diamides (Coragen, Voliam Xpress, Vetica, Belt) were the third most commonly chemistry used in fall lettuce. Since they were first registered in 2008, PCAs have steadily incorporated this new chemical class into their Lepidopterous larvae management programs. The use of Belt increased significantly this season, whereas foliar uses of Coragen declined. Exirel and Verimark usage was reported for the first time in the fall 2015 on about 5% of the acreage. Use of the tetramic acid chemistry (Movento) on fall lettuce declined in 2015, but increased on spring lettuce (Figure 4) where it is an important tool for aphid management. The usage of imidacloprid on both fall and spring lettuce has increased markedly since 2009 and was used on about 80% of the fall and spring acreage. Foliar neonicotinoid usage decreased last season, whereas Sivanto (butenolide) usage increased slightly. Sequoia (sulfoxamine) usage was down in spring 2016 due to the recent cancellation of the label. Torac usage for thrips management was up significantly the season. Although the broad spectrum, consumer–friendly pyrethroids were by far the predominant chemistry applied to lettuce, for the sixth season in a row, PCAs treated a greater percentage of their acreage with selective, reduced-risk products than with the broadly toxic, OP and Carbamate chemistries. To view a summary of the estimated insecticide usage by chemical class, as well as the 15 most commonly used insecticides on lettuce this past growing season, go to Insecticide Usage on Desert Lettuce, 2015-16.
This study was conducted at the JV farms at Gila Valley. Lettuce variety ‘Guapo’ was seeded, then sprinkler-irrigated to germinate seed on September 19, 2023, on double rows 12 in. apart on beds with 42 in. between bed centers. Rest of the irrigation was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed, which contained two 25 ft rows of lettuce. Plants were thinned on October 9, 2023 at the 3-4 leaf stage to a 12-inch spacing. Treatment beds were separated by single nontreated beds. Treatments were applied by incorporating in soil before seeding or with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Month
Max
Min
Avg
Rain
September
100
71
86
0.71 in
October
93
61
77
0.00 in
November
80
51
65
0.08 in
December
71
44
57
0.82 in
Fusarium wilt (caused by Fusarium oxysporum f. sp. lactucae ) rating was done in the field by observing the typical symptom of lettuce wilt. Confirmation was done by cutting the cross section of roots. Disease scoring/rating was done on December 6, 2023.
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. The disease pressure was extremely high in 2023, and most treatments showed little or no control against the disease. The treatments that showed some activity were Bexfond, Cevya, Rhyme, and Serifel. Plant vigor was normal and phytotoxicity symptoms were not observed in any treatments in this trial.
Controlling Fusarium Wilt of Lettuce Using Steam Heat – Trial Initiated
Earlier this week, we initiated a trial examining the use of band steam for controlling Fusarium wilt of lettuce. The premise behind this research is to use steam heat to raise soil temperatures to levels sufficient to kill soilborne pathogens. For Fusarium oxysporum f. sp. lactucae, the pathogen which causes Fusarium wilt of lettuce, the required temperature for control is generally taken to be > 140°F for 20 minutes. Soil solarization, where clear plastic is placed over the crop bed during the summer, exploits this concept. The technique raises soil surface temperatures to 150-155˚F, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
In our trials, we are using steam heat to raise soil temperatures. Steam is delivered by a 35 BHP steam generator mounted on a custom designed elongated bed shaper (Fig. 1). Preliminary results were encouraging. The device was able to increase the temperature of the top 3” of soil to over 180°F at a travel speed of 0.5 mph as shown in this video of the machine in action (shown below). These temperatures exceed that of those known to control pathogens responsible for causing Fusarium wilt of lettuce (> 140°F for 20 minutes).
Stay tuned for final trial results and reports on the efficacy of using steam heat to control Fusarium wilt of lettuce.
If you are interested in evaluating the technique on your farm, please contact me. We are seeking additional sites with a known history of Fusarium wilt of lettuce disease incidence to test the efficacy and performance of the device.
References
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Acknowledgements
This project is sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
A special thank you is extended to Cory Mellon and Mellon Farms for allowing us to conduct this research on their farm.
Weeds are one of the most visible of all agricultural pests. They can’t move or hide and once established often stick up over the crop. Just one weed in a 10 acre field is annoying to look at. With insects and diseases, the damage is often more visible than the pest. That is not the case with weeds. A moderate weed infestation is approximately 10 weeds per square foot. If a herbicide produces 90% control, that leaves 1 weed per square foot or 43 weeds per acre. Without an untreated check, this can look like the herbicide failed! It is easy to leave an untreated spot in a field and it is well worth doing. Many applicators do so unintentionally because of skips, powerlines and other causes. They help determine crop injury and weed control. Here are some examples of what various levels of control looked like from one of our cole crop trials: