Seems like each year about this time we begin to think how unusual this produce season is compared to previous years. Of course, every season is different. That’s the complicated nature of farming and pest management; so many factors (some explained and many unexplained) influence plant growth and insect pest activity and abundance. I thought I’d share some of my recent observations of “unusual” insect activity from research plots at the Yuma Ag Center (YAC), local commercial fields and conversations with PCAs. Whitefly populations were the lightest we’ve seen in years, but have been heavy in a few small areas. Many, like myself, believe this is due to the lower cotton acreage this summer, but there could be other factors as well. Beet armyworm pressure remains steady, but seems much lower than what I usually see this time of the year. Cabbage looper numbers have been considerably lower from what we typically see in lettuce and cole crops in October. There numbers seem to be increasing now. Corn earworm larvae populations appear to be about normal relative to the past 3 or 4 years. So far, I have not had any complaints in regards to controlling these worm pests, and all the standard Lep materials are performing up to par in my efficacy trials. In contrast, diamondback moth larvae are very abundant in my broccoli trials. They showed up earlier and in higher numbers than I typically see this time of the year. Not sure why? Good news is, they remain easy to kill with standard materials. Another interesting pest showing up is the Hawaiian beet webworm. They were very abundant last year and PCAs have been sending me images from this season (see image below). The larvae prefer spinach and beets and can cause damage if left untreated. Again, easy to control. Western flower thrips are on the increase, consistent with the warm weather. Adult and immatures are increasing on my lettuce plots, and several PCAs have mentioned that they are quite abundant. Have also had some reports of cowpea aphids showing up in lettuce. Experience has shown us that cowpea aphid will begin to colonize lettuce about this time of the year, but never seems to amount to much and colonies disappear when it gets colder. If the weather breaks in the next week or so as anticipated, worm and thrips pressure should slow down considerably. However, given our current and predicted El Nino weather pattern, all bets are off. So, have your weather reports handy, and keep your eyes open for the unexpected. Remember: When in Doubt-Scout.
We are on the final section of virus transmission. Virus transmission by insects is one of the most efficient and economically important transmission in agriculture. When you have insects in your crops, not only you are losing your crops because of feeding/chewing by insects, a lot of insects also act as a vector of plant viruses.
Seven out of 29 orders of insect feeding on living green land plants are vectors of plant viruses.
Insect transmit viruses in 4 distinct modes:
Non persistent transmission: The insects can acquire the virus in a matter if seconds/minutes and they are immediately viruliferous. The virus in retained in the stylet of the insect and are transmitted to the next plant the insect feeds on. The virus is retained in the vector only for few minutes and is lost after insect molting. Most viruses transmitted by aphids are non persistent. So when you see few aphids in your melon field and see cucumber mosaic virus symptoms 1-2 weeks later in your field, don’t be surprised. Aphids are efficient vectors, and since viruses are systemic it takes anywhere from few days to 2-3 weeks for the plants to show symptoms. Thus it is very important to manage insects in the field even if you don’t think the ‘pressure’ is not as high.
Semi-persistent transmission: The insects can acquire the virus in minutes/hours and there is no latent (incubation) period in the insect. The virus can stay in the insects foregut for hours and is lost after insect molting. Some species of aphids and whiteflies fall in this category. Example: Cucurbit yellow stunting disorder virus in melons transmitted by whiteflies.
Persistent circulative: Insects have to feed on virus infected plants for hours/days to acquire the virus and the virus has to incubate for hours/days in the insect. After insect can transmit the virus for weeks. Virus can be present in the vectors hemolymph but there is no multiplication of virus in the insect body. Vectors in this transmission includes: Aphids, leafhopper, whiteflies, treehopper.
Example: Beet curly top virus transmission by beet leafhopper
Persistent propagative: Insects have to feed on virus infected plants for hours/days to acquire the virus and the virus has to incubate for hours/days in the insect. After insect can transmit the virus throughout its lifespan. The virus can multiply in the vector system and often times the virus particles are also passed on to the insect offspring. Tomato spotted wilt virus is transmitted on persistent propagative manner by 9 different species on thrips.
Save the Date : 2024 Plant Pathology Workshop
When: August 29th 8AM-12 PM ( breakfast and Lunch provided by Gowan Company and BASF)
Where: Yuma Ag Center, 6425 W 8th Street
What will covered: Plant Pathology program Updates, past season field trial results (we
have some exciting results to share), Q&A to help better Plant pathology program,
Industry panel discussion for all your industry related questions! See you in few weeks!
Controlling Fusarium Wilt of Lettuce Using Steam Heat – Trial Initiated
Earlier this week, we initiated a trial examining the use of band steam for controlling Fusarium wilt of lettuce. The premise behind this research is to use steam heat to raise soil temperatures to levels sufficient to kill soilborne pathogens. For Fusarium oxysporum f. sp. lactucae, the pathogen which causes Fusarium wilt of lettuce, the required temperature for control is generally taken to be > 140°F for 20 minutes. Soil solarization, where clear plastic is placed over the crop bed during the summer, exploits this concept. The technique raises soil surface temperatures to 150-155˚F, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
In our trials, we are using steam heat to raise soil temperatures. Steam is delivered by a 35 BHP steam generator mounted on a custom designed elongated bed shaper (Fig. 1). Preliminary results were encouraging. The device was able to increase the temperature of the top 3” of soil to over 180°F at a travel speed of 0.5 mph as shown in this video of the machine in action (shown below). These temperatures exceed that of those known to control pathogens responsible for causing Fusarium wilt of lettuce (> 140°F for 20 minutes).
Stay tuned for final trial results and reports on the efficacy of using steam heat to control Fusarium wilt of lettuce.
If you are interested in evaluating the technique on your farm, please contact me. We are seeking additional sites with a known history of Fusarium wilt of lettuce disease incidence to test the efficacy and performance of the device.
References
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Acknowledgements
This project is sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
A special thank you is extended to Cory Mellon and Mellon Farms for allowing us to conduct this research on their farm.
Weeds are one of the most visible of all agricultural pests. They can’t move or hide and once established often stick up over the crop. Just one weed in a 10 acre field is annoying to look at. With insects and diseases, the damage is often more visible than the pest. That is not the case with weeds. A moderate weed infestation is approximately 10 weeds per square foot. If a herbicide produces 90% control, that leaves 1 weed per square foot or 43 weeds per acre. Without an untreated check, this can look like the herbicide failed! It is easy to leave an untreated spot in a field and it is well worth doing. Many applicators do so unintentionally because of skips, powerlines and other causes. They help determine crop injury and weed control. Here are some examples of what various levels of control looked like from one of our cole crop trials:
Corn earworm:
CEW moth counts increased in the Rol and Dome Vallley areas, above average for this time of year.
Beet armyworm:
Trap counts low; lower than average compared to previous years.
Cabbage looper:
Cabbage looper counts increased in most traps and about average for this time of season.
Diamondback moth:
DBM moths counts increased in most areas. About average for this time of the year.
Whitefly:
Adult movement negligible, typical for mid-winter.
Thrips:
Thrips adult counts remain low, likely in response to rainfall in late December. Currently, numbers are below average compared with previous years.
Aphids:
Aphid movement increased significantly in the past two weeks, particularly in North Yuma and Gila Valleys. Highest numbers we’ve seen in 11 years.
Leafminers:
Adults remain low in most locations, average for January.