With the desert produce season almost completed and the spring melon season beginning, now is a good time to review the insecticide chemistries commonly used in your insect management programs. This is an important consideration as you make the transition from winter produce to alfalfa, spring melons and summer cotton where many of the same insecticide products are available in all these commodities. Sustaining long-term insecticide efficacy that provides cost-effective crop protection requires a conscious effort on the part of PCAs and growers to use insecticides responsibly. Over the past 30 years, Agrochemical Manufacturers have developed and brought to market over 20 new classes of chemistry that are highly effective, selective, and significantly safer than their chemical predecessors. These include the neonicotinoids, spinosyns, tetramic acid derivatives and anthranilic diamides to name a few. Most recently, we have seen new feeding disruptor products, PQZ (pyrifluquinazon) and Versys/Sefina (afidopyropen) being applied to fall melons for virus management and in winter vegetables for aphid management. Although, the development of new insecticide chemistries has been a bit slow over the past few years, we’re now seeing industry beginning to develop several new experimental insecticides for desert crops. You’ll be pleased to know that several compounds are being targeted for western flower thrips. Of course, at best many of these products are a few years away from registration. But this is great news as many of the older products are slowly being phased out of the marketplace. It was just a couple of years ago that flubendiamide (Belt, Vetica) was removed from the market, chlorpyrifos (Lorsban) is now gone, and EPA is currently proposing label changes to the neonicotinoids which could impact their use on many important crops. Thus, it is imperative to sustain the efficacy of the newer insecticide tools currently available and Insecticide Resistance Management (IRM) is now more important than ever. The most fundamental approach to IRM is to minimize the selection of resistance by a pest to any one type of insecticide chemistry. The key to sustaining insecticide susceptibility is to avoid exposure of successive generations of an insect pest population to the same MOA. Historically, alternating, or rotating compounds with different modes of action (MOA) each time you spray has provided sustainable and effective IRM in our desert cropping systems. When it is comes to IRM; “rotation, rotation, rotation”. In other words, never expose a generation of insects to the same MOA more than twice. The Insecticide Resistance Action Committee (IRAC), a coordinated crop protection industry group, was formed to develop guidelines to delay or prevent resistance. Using their most recent information we have produced a brief publication which provides the latest local information on the modes of actions, routes of activity and pest spectrum for important insecticide chemistries used in desert produce and melon crops - see the attached Insecticide Modes of Action on Desert Produce Crops. This classification list will provide you with an additional set of guidelines for the selection of insecticides that can be used in desert IPM programs.
2023-2024 Powdery Mildew of Lettuce Fungicide Trial
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Lettuce was seeded, then sprinkler-irrigated to germinate seed on Nov 28, 2023 on double rows 12 in. apart on beds with 42 in. between bed centers. All other water was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed, which contained two 25 ft rows of lettuce. Plants were thinned Jan 17, 2024 at the 3-4 leaf stage to a 12-inch spacing. Treatment beds were separated by single nontreated beds. Treatments were applied with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Month
Max Temp (°F)
Min Temp (°F)
Average Temp (°F)
Rainfall
November
80
51
65
0.08 in
December
71
44
57
0.82 in
January
68
42
54
1.14 in
February
73
47
59
0.50 in
Powdery mildew (caused by Golovinomyces cichoracearum) efficacy trial treatments were made on February 15,2024, February 23, 2024, March 4, 2024, and March 12, 2024and .Disease was first seen on February 26,2024. Disease rating was done on March 15, 2024. Disease severity was determined by rating 10 plants within each of the four replicate plots per treatment using the following rating system: 0 = no powdery mildew present; 0.5 = one to a few very small powdery mildew colonies on bottom leaves; 1 = powdery mildew present on bottom leaves of plant; 2 = powdery mildew present on bottom leaves and lower wrapper leaves; 3 = powdery mildew present on bottom leaves and all wrapper leaves; 4 = powdery mildew present on bottom leaves, wrapper leaves, and cap leaf; 5 = powdery mildew present on entire plant. These ratings were transformed to percentage of leaves infected values before being statistically analyzed. Yield loss due to rejected lettuce heads would likely begin to occur on plants with a powdery mildew rating above 2.0 (percentage of leaves infected value of 40).
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. Most treatments significantly reduced the final severity of powdery mildew compared to nontreated plants. The most effective fungicides were Rhyme, Merivon, Quintec, Cevya, Luna Sensation, Luna Experience, and Elisys.
Controlling Fusarium Wilt of Lettuce Using Steam Heat – Trial Initiated
Earlier this week, we initiated a trial examining the use of band steam for controlling Fusarium wilt of lettuce. The premise behind this research is to use steam heat to raise soil temperatures to levels sufficient to kill soilborne pathogens. For Fusarium oxysporum f. sp. lactucae, the pathogen which causes Fusarium wilt of lettuce, the required temperature for control is generally taken to be > 140°F for 20 minutes. Soil solarization, where clear plastic is placed over the crop bed during the summer, exploits this concept. The technique raises soil surface temperatures to 150-155˚F, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
In our trials, we are using steam heat to raise soil temperatures. Steam is delivered by a 35 BHP steam generator mounted on a custom designed elongated bed shaper (Fig. 1). Preliminary results were encouraging. The device was able to increase the temperature of the top 3” of soil to over 180°F at a travel speed of 0.5 mph as shown in this video of the machine in action (shown below). These temperatures exceed that of those known to control pathogens responsible for causing Fusarium wilt of lettuce (> 140°F for 20 minutes).
Stay tuned for final trial results and reports on the efficacy of using steam heat to control Fusarium wilt of lettuce.
If you are interested in evaluating the technique on your farm, please contact me. We are seeking additional sites with a known history of Fusarium wilt of lettuce disease incidence to test the efficacy and performance of the device.
References
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Acknowledgements
This project is sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
A special thank you is extended to Cory Mellon and Mellon Farms for allowing us to conduct this research on their farm.
Weeds are one of the most visible of all agricultural pests. They can’t move or hide and once established often stick up over the crop. Just one weed in a 10 acre field is annoying to look at. With insects and diseases, the damage is often more visible than the pest. That is not the case with weeds. A moderate weed infestation is approximately 10 weeds per square foot. If a herbicide produces 90% control, that leaves 1 weed per square foot or 43 weeds per acre. Without an untreated check, this can look like the herbicide failed! It is easy to leave an untreated spot in a field and it is well worth doing. Many applicators do so unintentionally because of skips, powerlines and other causes. They help determine crop injury and weed control. Here are some examples of what various levels of control looked like from one of our cole crop trials:
Area wide Insect Trapping Network VegIPM Update, Vol. 11, No. 21, October 14, 2020
Results of pheromone and sticky trap catches can be viewedhere.
Corn earworm: Moth activity is above normal for early October ad has been steadily increasing since mid-September, particularly in Dome Valley and south Yuma Valley.
Beet armyworm: Moths remain active throughout the desert, especially in Texas Hill and Dome Valley growing areas.
Cabbage looper: Cabbage looper activity remains unusually low for early October, likely a result of unusually hot weather. Larvae just starting to show up in some fields.
Whitefly: Adult movement has been about average for this time of year. Activity highest in Wellton and Roll near fall melons.
Thrips: To date, thrips activity has been seasonably low at all trap locations; most activity found in Bard. Numbers beginning to slowly trend upward
Aphids: Aphids have been caught in only one trap thus far (Bard). Normal for this time of year. Still early, anticipate they will begin to show up in heavier numbers in mid-late October.
Leafminers: Adult activity below normal for September, but moderate numbers caught in Wellton and south Gila Valley in areas where cotton was recently harvested and disked under.