Over the past two weeks, the sticky traps in our Areawide Insect Trapping Network placed near recently disked up produce fields have been literally covered with flies. Many of the flies identified on these traps were adult seedcorn maggot (SCM). This is not surprising since it is this time of the year that SCM can cause significant stand reductions in spring melons and other large seeded crops due to larvae feeding on germinating seed, roots and even stems. If SCM populations are high, replanting parts or all of an infested field is often necessary. Not only is this an inconvenience to the grower, but replanting is expensive and can disrupt harvest schedules. Unfortunately, once maggots have been found infesting the soil during stand establishment, there is usually nothing one can do. Thus, avoidance of the problem is the most effective way of preventing stand reductions. First, weather plays a major role in determining the damage potential for SCM to be a problem. Melon stands are more susceptible to SCM during wet, cool spring weather in which seed germination is slowed or delayed. These conditions give SCM a chance to develop in the soil and attack the seeds before they can emerge. So far this spring, our weather conditions have been just the opposite, warm and dry. Secondly, our cropping system plays a key role. Melon crops following produce are the most often attacked because SCM are attracted to fields with high levels of decomposing organic matter. This includes heavy plant residue remaining after harvest of the previous lettuce or cole crop, as well as applications of manure prior to planting. Growers would be encouraged not to plant melons into fields under these conditions. Unfortunately, given the demands on local acreage, this is sometimes not practical. However if growers decide to plant in these conditions, then it would be wise to use a preventative insecticide applied at planting to minimize the impact from SCM and give seedling stands a fighting chance. Guidelines for SCM management can be found in Seedcorn maggot 2014, and alternatives that have shown activity against SCM and may be practical for SCM management in spring melons can be found in SCM Control on Cantaloupes.
This study was conducted at the JV farms at Gila Valley. Lettuce variety ‘Guapo’ was seeded, then sprinkler-irrigated to germinate seed on September 19, 2023, on double rows 12 in. apart on beds with 42 in. between bed centers. Rest of the irrigation was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed, which contained two 25 ft rows of lettuce. Plants were thinned on October 9, 2023 at the 3-4 leaf stage to a 12-inch spacing. Treatment beds were separated by single nontreated beds. Treatments were applied by incorporating in soil before seeding or with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
Month
Max
Min
Avg
Rain
September
100
71
86
0.71 in
October
93
61
77
0.00 in
November
80
51
65
0.08 in
December
71
44
57
0.82 in
Fusarium wilt (caused by Fusarium oxysporum f. sp. lactucae ) rating was done in the field by observing the typical symptom of lettuce wilt. Confirmation was done by cutting the cross section of roots. Disease scoring/rating was done on December 6, 2023.
The data in the table illustrate the degree of disease control obtained by application of the various treatments in this trial. The disease pressure was extremely high in 2023, and most treatments showed little or no control against the disease. The treatments that showed some activity were Bexfond, Cevya, Rhyme, and Serifel. Plant vigor was normal and phytotoxicity symptoms were not observed in any treatments in this trial.
Controlling Fusarium Wilt of Lettuce Using Steam Heat – Trial Initiated
Earlier this week, we initiated a trial examining the use of band steam for controlling Fusarium wilt of lettuce. The premise behind this research is to use steam heat to raise soil temperatures to levels sufficient to kill soilborne pathogens. For Fusarium oxysporum f. sp. lactucae, the pathogen which causes Fusarium wilt of lettuce, the required temperature for control is generally taken to be > 140°F for 20 minutes. Soil solarization, where clear plastic is placed over the crop bed during the summer, exploits this concept. The technique raises soil surface temperatures to 150-155˚F, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
In our trials, we are using steam heat to raise soil temperatures. Steam is delivered by a 35 BHP steam generator mounted on a custom designed elongated bed shaper (Fig. 1). Preliminary results were encouraging. The device was able to increase the temperature of the top 3” of soil to over 180°F at a travel speed of 0.5 mph as shown in this video of the machine in action (shown below). These temperatures exceed that of those known to control pathogens responsible for causing Fusarium wilt of lettuce (> 140°F for 20 minutes).
Stay tuned for final trial results and reports on the efficacy of using steam heat to control Fusarium wilt of lettuce.
If you are interested in evaluating the technique on your farm, please contact me. We are seeking additional sites with a known history of Fusarium wilt of lettuce disease incidence to test the efficacy and performance of the device.
References
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Acknowledgements
This project is sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
A special thank you is extended to Cory Mellon and Mellon Farms for allowing us to conduct this research on their farm.
Weeds are one of the most visible of all agricultural pests. They can’t move or hide and once established often stick up over the crop. Just one weed in a 10 acre field is annoying to look at. With insects and diseases, the damage is often more visible than the pest. That is not the case with weeds. A moderate weed infestation is approximately 10 weeds per square foot. If a herbicide produces 90% control, that leaves 1 weed per square foot or 43 weeds per acre. Without an untreated check, this can look like the herbicide failed! It is easy to leave an untreated spot in a field and it is well worth doing. Many applicators do so unintentionally because of skips, powerlines and other causes. They help determine crop injury and weed control. Here are some examples of what various levels of control looked like from one of our cole crop trials:
Area wide Insect Trapping Network VegIPM Update, Vol. 11, No. 21, October 14, 2020
Results of pheromone and sticky trap catches can be viewedhere.
Corn earworm: Moth activity is above normal for early October ad has been steadily increasing since mid-September, particularly in Dome Valley and south Yuma Valley.
Beet armyworm: Moths remain active throughout the desert, especially in Texas Hill and Dome Valley growing areas.
Cabbage looper: Cabbage looper activity remains unusually low for early October, likely a result of unusually hot weather. Larvae just starting to show up in some fields.
Whitefly: Adult movement has been about average for this time of year. Activity highest in Wellton and Roll near fall melons.
Thrips: To date, thrips activity has been seasonably low at all trap locations; most activity found in Bard. Numbers beginning to slowly trend upward
Aphids: Aphids have been caught in only one trap thus far (Bard). Normal for this time of year. Still early, anticipate they will begin to show up in heavier numbers in mid-late October.
Leafminers: Adult activity below normal for September, but moderate numbers caught in Wellton and south Gila Valley in areas where cotton was recently harvested and disked under.