Impact of Bagrada Bug on Desert Cole Crops from 2010-2012
The Bagrada bug, Bagrada hilaris, first occurred on desert cole crops at damaging levels in the fall on 2010, and since that initial outbreak the invasive stinkbug has become a major pest of desert cole crops. In 2012, widespread infestations were reported throughout the desert growing area from September and into early November, comparable to the infestations growers experienced in 2010. Stand losses and yield/quality reductions to broccoli, cauliflower, cabbage and other Brassica crops were considered economically significant in some growing areas, albeit at lower levels than reported in 2010. Insecticide usage to control this pest remains high. In an attempt to document these impacts, we have surveyed produce growers and PCAs from Yuma, Imperial Valley and central Arizona on an annual basis since 2010 to estimate the intensity of chemical management and severity of Bagrada bug infestations on direct-seeded and transplanted cole crops. A summary of the survey results can be found in the following report: Impact of the Bagrada Bug on Desert Cole Crops from 2010 - 2012: A Survey of PCA and Growers. Based on PCA estimates from the surveys, Bagrada bugs have occurred on greater than 85% of the direct seeded and transplanted cole crop acreage over the past 3 seasons. Similarly, almost all of these infested acres were treated with insecticides to control the pest. Averaged across all years, PCAs / growers reported treating direct-seeded crops for Bagrada bugs on a higher percentage of acres than where they reported that Bagrada bugs were present. On average, about 78.5% of the acreage was chemigated 1.6 times, and about 88% of the reported acres were sprayed an average of 2.3 times in direct seeded-crops. When the number of chemigations and foliar sprays are combined over all three years, almost 4 insecticides applications were made to control this pest. Damage from Bagrada bug infestations at stand establishment in both direct-seeded and transplanted crops has decreased by more than 50% since the initial outbreaks in 2010, likely a result of PCA awareness of the pest’s damage potential and better timing and use of chemigation treatments and foliar spray applications, as well as proper selection of effective products. PCAs also provided information on insecticides that provided effective control through both chemigations and foliar sprays. In general, they reported that products that have contact activity (i.e., Pyrethroids, OP/Carbamates) appeared to provide the most effective control against Bagrada adults on both direct-seeded and transplanted cole crops. Overall, the results of the PCA survey are consistent with results obtained in research trials conducted at the Yuma Agricultural Center over the past three years.
We are on the final section of virus transmission. Virus transmission by insects is one of the most efficient and economically important transmission in agriculture. When you have insects in your crops, not only you are losing your crops because of feeding/chewing by insects, a lot of insects also act as a vector of plant viruses.
Seven out of 29 orders of insect feeding on living green land plants are vectors of plant viruses.
Insect transmit viruses in 4 distinct modes:
Non persistent transmission: The insects can acquire the virus in a matter if seconds/minutes and they are immediately viruliferous. The virus in retained in the stylet of the insect and are transmitted to the next plant the insect feeds on. The virus is retained in the vector only for few minutes and is lost after insect molting. Most viruses transmitted by aphids are non persistent. So when you see few aphids in your melon field and see cucumber mosaic virus symptoms 1-2 weeks later in your field, don’t be surprised. Aphids are efficient vectors, and since viruses are systemic it takes anywhere from few days to 2-3 weeks for the plants to show symptoms. Thus it is very important to manage insects in the field even if you don’t think the ‘pressure’ is not as high.
Semi-persistent transmission: The insects can acquire the virus in minutes/hours and there is no latent (incubation) period in the insect. The virus can stay in the insects foregut for hours and is lost after insect molting. Some species of aphids and whiteflies fall in this category. Example: Cucurbit yellow stunting disorder virus in melons transmitted by whiteflies.
Persistent circulative: Insects have to feed on virus infected plants for hours/days to acquire the virus and the virus has to incubate for hours/days in the insect. After insect can transmit the virus for weeks. Virus can be present in the vectors hemolymph but there is no multiplication of virus in the insect body. Vectors in this transmission includes: Aphids, leafhopper, whiteflies, treehopper.
Example: Beet curly top virus transmission by beet leafhopper
Persistent propagative: Insects have to feed on virus infected plants for hours/days to acquire the virus and the virus has to incubate for hours/days in the insect. After insect can transmit the virus throughout its lifespan. The virus can multiply in the vector system and often times the virus particles are also passed on to the insect offspring. Tomato spotted wilt virus is transmitted on persistent propagative manner by 9 different species on thrips.
Save the Date : 2024 Plant Pathology Workshop
When: August 29th 8AM-12 PM ( breakfast and Lunch provided by Gowan Company and BASF)
Where: Yuma Ag Center, 6425 W 8th Street
What will covered: Plant Pathology program Updates, past season field trial results (we
have some exciting results to share), Q&A to help better Plant pathology program,
Industry panel discussion for all your industry related questions! See you in few weeks!
Controlling Fusarium Wilt of Lettuce Using Steam Heat – Trial Initiated
Earlier this week, we initiated a trial examining the use of band steam for controlling Fusarium wilt of lettuce. The premise behind this research is to use steam heat to raise soil temperatures to levels sufficient to kill soilborne pathogens. For Fusarium oxysporum f. sp. lactucae, the pathogen which causes Fusarium wilt of lettuce, the required temperature for control is generally taken to be > 140°F for 20 minutes. Soil solarization, where clear plastic is placed over the crop bed during the summer, exploits this concept. The technique raises soil surface temperatures to 150-155˚F, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
In our trials, we are using steam heat to raise soil temperatures. Steam is delivered by a 35 BHP steam generator mounted on a custom designed elongated bed shaper (Fig. 1). Preliminary results were encouraging. The device was able to increase the temperature of the top 3” of soil to over 180°F at a travel speed of 0.5 mph as shown in this video of the machine in action (shown below). These temperatures exceed that of those known to control pathogens responsible for causing Fusarium wilt of lettuce (> 140°F for 20 minutes).
Stay tuned for final trial results and reports on the efficacy of using steam heat to control Fusarium wilt of lettuce.
If you are interested in evaluating the technique on your farm, please contact me. We are seeking additional sites with a known history of Fusarium wilt of lettuce disease incidence to test the efficacy and performance of the device.
References
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Acknowledgements
This project is sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
A special thank you is extended to Cory Mellon and Mellon Farms for allowing us to conduct this research on their farm.
Weeds are one of the most visible of all agricultural pests. They can’t move or hide and once established often stick up over the crop. Just one weed in a 10 acre field is annoying to look at. With insects and diseases, the damage is often more visible than the pest. That is not the case with weeds. A moderate weed infestation is approximately 10 weeds per square foot. If a herbicide produces 90% control, that leaves 1 weed per square foot or 43 weeds per acre. Without an untreated check, this can look like the herbicide failed! It is easy to leave an untreated spot in a field and it is well worth doing. Many applicators do so unintentionally because of skips, powerlines and other causes. They help determine crop injury and weed control. Here are some examples of what various levels of control looked like from one of our cole crop trials:
Corn earworm:
CEW moth counts remained low over the past 2 weeks across all locations and about average for this time of the season.
Beet armyworm:
Trap counts decreased in most locations, and well below average for late-November. Most activity in Yuma Valley.
Cabbage looper:
Cabbage looper trap counts remained low in most areas but increased in the Yuma Valley. Activity below average for late November.
Diamondback moth:
Adults peaked in Bard, Gila and Yuma Valleys and slightly above average for this time of year. Traps located adjacent to cauliflower seed crops had the highest trap captures
Whitefly:
Adults remains active in Dome Valley and Roll consistent with melon crops completing harvest, but below average movement for this time of season.
Thrips:
Thrips adult movement decreased in most locations last week, and most active in Dome Valley, Wellton, and Tacna. Activity about average for mid-November.
Aphids:
Aphid movement peaked so far this season with highest activity in Dome Valley, Bard, N. Yuma Valley and N. Gila Valleys over the past 2 weeks. Activity average for this time of year.
Leafminers:
Adult activity increased sharply in the Dome, Yuma, and Gila Valleys, about average for this time of season.