With the produce season essentially finished, it’s time to begin thinking about insect management in melons. Spring melon crops are rapidly growing, and so are insect pest populations. Cabbage loopers and leafminers are becoming evident in some areas, and PCAs should start ramping up their monitoring and sampling. More importantly, whitely populations are quietly becoming abundant on the spring melons of all sizes. Adults can easily be found on recently planted melons located at the Yuma Ag Center, and reports from local PCAs suggest that adult populations are beginning to show up on older plantings. As temperatures increase and crops/weeds mature, avoidance of excessive feeding from whitefly nymphs should be the primary concern on all melon types. Although CYSDV does occur in later spring melons, it is rarely yield limiting. But honeydew and sooty mold contamination on cantaloupes, mixed melons and watermelons can significantly reduce quality and marketability is whiteflies are not adequately controlled. Our research has shown that to prevent fruit yield and quality losses on spring melons, a foliar insecticide treatment should be applied on threshold; that is, when average adult numbers exceed 2 per leaf when averaged across an entire melon field. At this level of adult abundance, immature populations are beginning to colonize. Timing sprays based on the adult threshold has been shown to significantly reduce the chance of yield / quality losses during spring harvests. This threshold applies for the use of recommended IGRs (Courier, Knack, Cormoran, and Oberon), foliar applied neonicotinoids (Assail, Venom, Scorpion), neonicotinoid-like compounds (Sivanto prime and Transform), diamides, (Exirel and Minecto Pro) and the feeding disruptors (PQZ and Sefina). For more information on whitefly management and available insecticides, go to these documents on Insect Management on Spring Melons: Whiteflies and Whitefly Control Chart-Spring Melons -2024. Also, be aware of honey bees and other pollinators in or around melon fields. If bees are present, be sure to carefully read labels and determine bee safety of a product before making an application in a melon field. If applications are necessary during bloom, only apply a product that is considered bee safe (e.g., PQZ, Sefina, Sivanto, Assail). We also recommend that insecticides only be applied when honeybees are not actively working in the field (e.g. 10:00 pm – 3: 00 am).
Downy Mildew of Lettuce and 4th annual downy mildew field day
Downy mildew has always been one of the major problem for PCAs and growers in the desert southwest. The symptoms observed are green to yellow angular spots on the upper surface of the leaves and fluffy growth on the lower side (See Picture). Symptoms usually start from older leaves. As disease progresses the lesion turn brown and dry up and in some occasions the disease can become systemic causing dark discoloration of vascular tissue. Favorable condition for disease development:
The pathogen Bremia lactucae thrives in damp, cool condition, with moisture present on leaves. Spores are short-lived but dispersed efficiently by wind during moist period. Cultivated lettuce is the main host of the pathogen but it has also been reported to infectartichoke, cornflower and strawflower. Why is downy mildew difficult to manage?
One of the main reason that hinders the disease management is the complexity of the pathogen. Bremia lactucae consists of multiple races (pathotypes), and new races continue to occur as pathogen evolves. The pathogen is one of the fastest evolving plant pathogen. And each pathotypes have developed insensitivity to fungicides to different extent.
One of the best practice is to grow resistant cultivar, but there are limitations. As the pathogen is highly variable and dynamic, resistant cultivars are not a permanent solution as the pathogen overcomes the resistance by evolving into virulent strains and isolates.
Preventative application of fungicides are effective to some extent. Reducing leaf wetness and humidity by using drip or furrow irrigation can be helpful. However, weather condition like rain during cool weather as we had in past couple of weeks is conducive to development of epidemics and we have very little control on that matter.
4th ANNUAL DOWNY MILDEW FIELD DAY
Save the date for March 8, 10 AM- Noon for 4th annual field day (See attached flyer). 2.0 CA and AZ CEU have been applied for. Taco truck will be there at noon for lunch.
Controlling Fusarium Wilt of Lettuce Using Steam Heat – Trial Initiated
Earlier this week, we initiated a trial examining the use of band steam for controlling Fusarium wilt of lettuce. The premise behind this research is to use steam heat to raise soil temperatures to levels sufficient to kill soilborne pathogens. For Fusarium oxysporum f. sp. lactucae, the pathogen which causes Fusarium wilt of lettuce, the required temperature for control is generally taken to be > 140°F for 20 minutes. Soil solarization, where clear plastic is placed over the crop bed during the summer, exploits this concept. The technique raises soil surface temperatures to 150-155˚F, effectively killing the pathogen and reducing disease incidence by 45-98% (Matheron and Porchas, 2010).
In our trials, we are using steam heat to raise soil temperatures. Steam is delivered by a 35 BHP steam generator mounted on a custom designed elongated bed shaper (Fig. 1). Preliminary results were encouraging. The device was able to increase the temperature of the top 3” of soil to over 180°F at a travel speed of 0.5 mph as shown in this video of the machine in action (shown below). These temperatures exceed that of those known to control pathogens responsible for causing Fusarium wilt of lettuce (> 140°F for 20 minutes).
Stay tuned for final trial results and reports on the efficacy of using steam heat to control Fusarium wilt of lettuce.
If you are interested in evaluating the technique on your farm, please contact me. We are seeking additional sites with a known history of Fusarium wilt of lettuce disease incidence to test the efficacy and performance of the device.
References
Matheron, M. E., & Porchas, M. 2010. Evaluation of soil solarization and flooding as management tools for Fusarium wilt of lettuce. Plant Dis. 94:1323-1328.
Acknowledgements
This project is sponsored by USDA-NIFA, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support.
A special thank you is extended to Cory Mellon and Mellon Farms for allowing us to conduct this research on their farm.
Heavy and widespread infestations of common purslane come up during ground preparation for lettuce every year. This occurs in fields that were kept weed free the previous year and is difficult to understand.
There are probably several reasons for this.
Seed Production
Common Purslane is very prolific. It has been reported that one plant can produce up to 240,000 seeds. The stems are so succulent that plants can remain viable and make seed even after it is uprooted.
Seed Longevity
Once seed is mature it can be viable for as long as 40 years. It has very small, hard seed that can remain dormant in the soil for ss long as 40 years .So you may have to control weeds that got into the field a generation ago..
Multiple perennial germinations
Common Purslane is supposed to be a summer annual, but it germinates multiple times all year in the low desert. It takes 12 hours after receiving moisture in the summer and 7 days in the winter, but it keeps germinating. It has to be controlled when it is less than 2” in diameter. If you wait until most of it germinates the early plants will be too big. If you spray or cultivate when all the emerged plants are small you will miss many that have yet to emerge. It is best to treat early and control the later emerging plants with a selective herbicide.
Rerooting
When common purslane is broken in pieces it can reroot at the nodes. Late cultivation often spreads this weed. Cultivation is not a good option when purslane is larger than 2”. Herbicides are a better option on big plants.
Seed dispersal
Purslane has a very small light seed. It moves in irrigation water and blows in the wind. Even completely clean fields are likely is be reinfested by seeds that are carried by water and wind into the field.
Best option
Considering the above factors, the best option for controlling common purslane may be preirrigation to germinate the weeds and early herbicide application or cultivation . Kerb and Prefar are both good on purslane. Prefar should be used at planting to incorporate it with a lot of water and Kerb should be used later to avoid leaching but don’t wait too long and risk germination of the weeds. Purslane germinates from shallow depths and split applications of Kerb may be a good option.
Area wide Insect Trapping Network (December 13, 2024)
Results of pheromone and sticky trap catches can be viewedhere.
Corn earworm: CEW moth counts down in all traps over the last 2 weeks; about average for early December.
Beet armyworm: Moth trap counts decreased in most areas last week but appear to remain active in some areas, and well above average for this time of the year.
Cabbage looper: Moths still active but declining in the past week. Below average for this time of the season.
Diamondback moth: Adults remain active in most traps. Below average for early December.
Whitefly: Adult movement continues to decline but still moving in Dome Valley and Tacna; overall about average for early December.
Thrips: Thrips adult movement continues to decline, overall activity below average
Aphids: Winged aphid movement in the desert valleys continues, and up significantly last 2 weeks. Above average for this time of season.
Leafminers: Adult activity down in most locations, below average for this time of season.