Hi, I’m Chris, and I’m thrilled to be stepping into the role of extension associate for plant pathology through The University of Arizona Cooperative Extension in Yuma County. I recently earned my Ph.D. in plant pathology from Purdue University in Indiana where my research focused on soybean seedling disease caused by Fusarium and Pythium. There, I discovered and characterized some of the first genetic resources available for improving innate host resistance and genetic control to two major pathogens causing this disease in soybean across the Midwest.
I was originally born and raised in Phoenix, so coming back to Arizona and getting the chance to apply my education while helping the community I was shaped by is a dream come true. I have a passion for plant disease research, especially when it comes to exploring how plant-pathogen interactions and genetics can be used to develop practical, empirically based disease control strategies. Let’s face it, fungicide resistance continues to emerge, yesterday’s resistant varieties grow more vulnerable every season, and the battle against plant pathogens in our fields is ongoing. But I firmly believe that when the enemy evolves, so can we.
To that end I am proud to be establishing my research program in Yuma where I will remain dedicated to improving the agricultural community’s disease management options and tackling crop health challenges. I am based out of the Yuma Agricultural Center and will continue to run the plant health diagnostic clinic located there.
Please drop off or send disease samples for diagnosis to:
Yuma Plant Health Clinic
6425 W 8th Street
Yuma, AZ 85364
If you are shipping samples, please remember to include the USDA APHIS permit for moving plant samples.
You can contact me at:
Email: cdetranaltes@arizona.edu
Cell: 602-689-7328
Office: 928-782-5879
Vol. 12, Issue 7, Published 4/7/2021
Over the last several years, there has been a tremendous amount of research activity towards the development of autonomous agriculture vehicles. A quick internet search will reveal over 50 companies or university research groups working in this space. A question I get often from groups developing such platforms is “What is a good agricultural application for our lightweight “robot”?”. It’s a great question, and for Arizona vegetable production, it’s also one that I’m not sure I have a satisfying answer for.
The calls I get regarding autonomous robots are mostly related to automated weeding applications. Automated weeding machines are commercially available, but their adoption has been limited not because of labor costs for tractor operation, rather it is the lack of the development of a functional and cost-effective means for identifying and removing weeds.
For decades, researchers have been attempting to develop sensing systems that are able to reliably detect weeds. Techniques such as 2-D and 3-D color imaging, x-rays, hyperspectral sensing and artificial intelligence have been tried (Slaughter, 2014; Bender et al., 2020). The best performing systems provide about 96% accuracy, meaning that 4% of the crops plants are identified as weeds and would be destroyed by the weeder. For high value vegetable crops like lettuce with gross revenues of roughly $10,000 per acre, killing 4% of the crop equates to $400 per acre of losses. Economically, this does not make sense as hand weeding labor costs are typically $300 per acre or less. The other main issue is that current automated weeding technologies are not highly precise and provide only partial control. Our studies with these types of machines have shown that these systems remove only about 1/3rd of the in-row weeds (Lati, et al., 2016) and a follow up hand weeding operation is often necessary. To be highly cost effective, elimination of the hand weeding step is needed.
In short, my recommendation to research groups asking about applications for autonomous robots is that their time and technical skills would best be served developing reliable crop/weed differentiation systems and a technique to remove a very high percentage of weeds.
References
Bender, A., Whelan, B. & Sukkarieh, S. 2020. A high‐resolution, multimodal data set for agricultural robotics: A Ladybird's‐eye view of Brassica. J. Field Robotics. 37(1): 73-96.
Lati, R.N, Siemens, M.C., Rachuy, J.S. & Fennimore, S.A. (2016). Intrarow Weed Removal in Broccoli and Transplanted Lettuce with an Intelligent Cultivator. Weed Technology, 30(3), 655-663.
Slaughter, D.C. The biological engineer: Sensing the difference between crops and weeds. Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture 61(2008): 63-78.
When known weedy fields are ready to plant and labor is expected to be short, it is tempting to use all the preplant herbicides that are available. In lettuce, there are three preplant herbicides available and it is not uncommon to use 2 and occasionally all 3 on the same crop. All three of these herbicides use the same mode of action to kill weeds. There are slight differences between them but they all either stop or disrupt cell division in the roots and or stems of the weeds. They are normally safe to lettuce unless the crop is stressed or the rate, timing or placement are poor. The rationale for using multiple preplant herbicides in lettuce is often to broaden the weed control spectrum or guard against misses caused by misapplication or environmental conditions. There are some hazards, however, that sometimes outweigh the benefits. Potential crop injury is increased. All 3 use the same mode of action and the chance of injuring developing crop roots is compounded. Sometimes herbicides are added that contribute nothing but potential injury to the mix. If you look at the following chart you can see that many weeds are controlled by Kerb, for instance, that are not controlled by Balan or Prefar. Why add them? All three control grasses, goosefoot and purslane. If environmental conditions and applications are optimal it is often possible to use only one. Herbicides are much less expensive than labor, but it is possible to overdo it and cause more problems and expense.
This time of year, John would often highlight Lepidopteran pests in the field and remind us of the importance of rotating insecticide modes of action. With worm pressure present in local crops, it’s a good time to revisit resistance management practices and ensure we’re protecting the effectiveness of these tools for seasons to come. For detailed guidelines, see Insecticide Resistance Management for Beet Armyworm, Cabbage Looper, and Diamondback Moth in Desert Produce Crops .
VegIPM Update Vol. 16, Num. 20
Oct. 1, 2025
Results of pheromone and sticky trap catches below!!
Corn earworm: CEW moth counts declined across all traps from last collection; average for this time of year.
Beet armyworm: BAW moth increased over the last two weeks; below average for this early produce season.
Cabbage looper: Cabbage looper counts increased in the last two collections; below average for mid-late September.
Diamondback moth: a few DBM moths were caught in the traps; consistent with previous years.
Whitefly: Adult movement decreased in most locations over the last two weeks, about average for this time of year.
Thrips: Thrips adult activity increased over the last two collections, typical for late September.
Aphids: Aphid movement absent so far; anticipate activity to pick up when winds begin blowing from N-NW.
Leafminers: Adult activity increased over the last two weeks, about average for this time of year.