On behalf of the Palumbo family, we would like to extend our deepest gratitude to everyone who made Dr. John Palumbo’s Celebration of Life such a meaningful and memorable event.
A heartfelt thank you to every amazing individual at the farm for your incredible dedication and hard work in planning and executing the celebration with such care and compassion. We are honored that you allowed us to use the farm as the venue to gather, laugh, cry, and share memories and stories of our loved one. We are truly grateful for the time and love that you put into honoring John.
To the generous donors and thoughtful planning committee, we thank you for your kindness, dedication, and outpouring of support. Your generosity has helped create a beautiful space for remembrance, healing, and connection. Your heartfelt speeches touched us deeply, making us both laugh and cry as we remembered and celebrated.
We understand that the loss of John was not only that of a colleague, but a friend and a constant presence in your daily lives. Some absences echo louder than words can express and this is one of them. Even in our sorrow we hold on to the memories, the love, and the moments that will forever be etched into our lives.
It meant so much for all of us to gather and celebrate a life so dearly loved. John would have been honored, and deeply moved, to know his life inspired such a beautiful tribute filled with laughter, stories, and connection.
This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Spinach ‘Meerkat’ was seeded, then sprinkler-irrigated to germinate seed Jan 13, 2025 on beds with 84 in. between bed centers and containing 30 lines of seed per bed. All irrigation water was supplied by sprinkler irrigation. Treatments were replicated four times in a randomized complete block design. Replicate plots consisted of 15 ft lengths of bed separated by 3 ft lengths of nontreated bed. Treatments were applied with a CO2 backpack sprayer that delivered 50 gal/acre at 40 psi to flat-fan nozzles.
Downy mildew (caused by Peronospora farinosa f. sp. spinaciae)was first observed in plots on Mar 5 and final reading was taken on March 6 and March 7, 2025. Spray date for each treatments are listed in excel file with the results.
Disease severity was recorded by determining the percentage of infected leaves present within three 1-ft2areas within each of the four replicate plots per treatment. The number of spinach leaves in a 1-ft2area of bed was approximately 144. The percentage were then changed to 1-10scale, with 1 being 10% infection and 10 being 100% infection.
The data (found in the accompanying Excel file) illustrate the degree of disease reduction obtained by applications of the various tested fungicides. Products that provided most effective control against the disease include Orondis ultra, Zampro, Stargus, Cevya, Eject .Please see table for other treatments with significant disease suppression/control. No phytotoxicity was observed in any of the treatments in this trial.
Controlling Disease and Weeds with Band-Steam – Yuma Trials Show Good Promise
In previous articles (Vol. 11 (13), Vol. 11 (20), Vol. 11(24)), I’ve discussed using band-steam to control plant diseases and weeds. Band-steaming is where steam is used to heat narrow strips of soil to temperature levels sufficient to kill soilborne pathogens and weed seed (>140 °F for > 20 minutes). The concept is showing good promise. This past season, three trials were conducted examining the efficacy of using steam for disease and weed control in Yuma, AZ. In the studies, steam was applied in a 4-inch-wide by 2-inch-deep band of soil centered on the seedline using a prototype band-steam applicator (Fig.1). The band-steam applicator is principally comprised of a 35 BHP steam generator mounted on top of an elongated bed shaper. The apparatus applies steam via shank injection and from cone shaped ports on top of the bed shaper.
Trial results were very encouraging as the prototype applicator was able to raise soil temperatures to target levels (140°F for >20 minutes) at viable travels speeds of 0.75 mph. Steam provided better than 80% weed control and significantly lowered hand weeding time by more than 2 hours per acre (Table 1). Results also showed that Fusarium colony forming units (CFU) were reduced from 2,600 in the control to 155 in the 0.75 mph and 53 in the 0.5 mph treatments, respectively (a more than 15-fold reduction). A significant difference in Fusarium wilt of lettuce disease incidence was not found, however disease infection at the field site was low (< 2%) and differences were not expected. At 0.5 mph, fuel costs were calculated to be $238/acre which was considered reasonable and consistent with the values reported by Fennimore et al. (2014).
An unexpected finding was that plants in steam treated plots appeared to be healthier and more vigorous than untreated plots (Fig. 2). This trial is still in progress and it will be interesting to see if this improved early growth translates into increases in crop yield.
In summary, early trial results are showing good promise for use of band-steam as a non-herbicidal method of pest control. We plan on conducting further trials in this multi-year study. If you are interested in evaluating the device on your farm and being part of the study please contact me. We are particularly interested in fields with a known history of Fusarium wilt of lettuce and/or Sclerotinia lettuce drop that will be planted to iceberg or romaine lettuce.
As always, if you are interested in seeing the machine operate or would like more information, please feel free to contact me.
Acknowledgements
This work is supported by Crop Protection and Pest Management grant no. 2017-70006-27273/project accession no. 1014065 from the USDA National Institute of Food and Agriculture, the Arizona Specialty Crop Block Grant Program and the Arizona Iceberg Lettuce Research Council. We greatly appreciate their support. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
A special thank you is extended to Mellon Farms for allowing us to conduct this research on their farm.
References
Fennimore, S.A., Martin, F.N., Miller, T.C., Broome, J.C., Dorn, N. and Greene, I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 49(12):1542-1549.
Click link below or picture to see the band-steam and co-product applicator in action!
Heavy and widespread infestations of common purslane come up during ground preparation for lettuce every year. This occurs in fields that were kept weed free the previous year and is difficult to understand.
There are probably several reasons for this.
Seed Production
Common Purslane is very prolific. It has been reported that one plant can produce up to 240,000 seeds. The stems are so succulent that plants can remain viable and make seed even after it is uprooted.
Seed Longevity
Once seed is mature it can be viable for as long as 40 years. It has very small, hard seed that can remain dormant in the soil for ss long as 40 years .So you may have to control weeds that got into the field a generation ago..
Multiple perennial germinations
Common Purslane is supposed to be a summer annual, but it germinates multiple times all year in the low desert. It takes 12 hours after receiving moisture in the summer and 7 days in the winter, but it keeps germinating. It has to be controlled when it is less than 2” in diameter. If you wait until most of it germinates the early plants will be too big. If you spray or cultivate when all the emerged plants are small you will miss many that have yet to emerge. It is best to treat early and control the later emerging plants with a selective herbicide.
Rerooting
When common purslane is broken in pieces it can reroot at the nodes. Late cultivation often spreads this weed. Cultivation is not a good option when purslane is larger than 2”. Herbicides are a better option on big plants.
Seed dispersal
Purslane has a very small light seed. It moves in irrigation water and blows in the wind. Even completely clean fields are likely is be reinfested by seeds that are carried by water and wind into the field.
Best option
Considering the above factors, the best option for controlling common purslane may be preirrigation to germinate the weeds and early herbicide application or cultivation . Kerb and Prefar are both good on purslane. Prefar should be used at planting to incorporate it with a lot of water and Kerb should be used later to avoid leaching but don’t wait too long and risk germination of the weeds. Purslane germinates from shallow depths and split applications of Kerb may be a good option.