Frost and freeze damage affect countless fruit and vegetable growers leading to yield losses and occasionally the loss of the entire crop. Frost damage occurs when the temperature briefly dips below freezing (32°F).With a frost, the water within plant tissue may or may not actually freeze, depending on other conditions. A frost becomes a freeze event when ice forms within and between the cell walls of plant tissue. When this occurs, water expands and can burst cell walls. Symptoms of frost damage on vegetables include brown or blackening of plant tissues, dropping of leaves and flowers, translucent limp leaves, and cracking of the fruit. Symptoms are usually vegetable specific and vary depending on the hardiness of the crop and lowest temperature reached. A lot of times frost injury is followed by secondary infection by bacteria or opportunist fungi confusing with plant disease.
Most susceptible to frost and freezing injury: Asparagus, snap beans, Cucumbers, eggplant, lemons, lettuce, limes, okra, peppers, sweet potato
Moderately susceptible to frost and freezing injury: Broccoli, Carrots, Cauliflower, Celery, Grapefruit, Grapes, Oranges, Parsley, Radish, Spinach, Squash
Least susceptible to frost and freezing injury: Brussels sprouts, Cabbage, Dates, Kale, Kohlrabi, Parsnips, Turnips, Beets
More information:
It’s October and planting season is well underway. When planting lettuce, uniform seed spacing is critical for efficient, economical crop thinning. Due to their lack of precision, automated lettuce thinning machines cannot eliminate lettuce plants that are spaced closer than about 1 1/8” apart. These closely spaced plants, commonly referred to as “doubles”, must be carefully removed by hand which is time consuming and expensive.
Several years ago, we conducted trials examining the influence of planter travel speed on seed spacing uniformity (Siemens and Gayler, 2016). In the study, two types of planters - a vacuum planter (Stanhay 785 Singulaire) and a belt planter (Stanhay 870) were tested with pelleted lettuce seed at travel speeds of 1.0, 1.5, 2.0 and 2.5 mph at the Yuma Agricultural Center. Vacuum planter test results showed that the percentage of “difficult to thin” spacings, defined seeds spaced less than 1.1” apart, increased from about 5% to 10% as speed increased from 1.0 mph to 2.5 mph (Fig. 1). Concomitantly, the percentage of seeds “precisely placed” within 0.5” of the target location (i.e., 2.0 ± 0.5”) decreased from 70% to less than 45%, and the percentage of skips increased from 7% to 30%. Variability of seed spacing uniformity as measured by the coefficient of variation (COV) of seed spacings also increased.
Similar declines in planter performance were found with the belt planter (Fig. 2). As travel speed increased from 1.0 to 2.5 mph, the percentage of difficult to thin spacings increased from 2% to 10%, precise spacings decreased from 93% to 65% and skips increased from 2% to 8%.
For both planter types, there was a significant decline in performance as speed increased from 1.5 mph to 2.0 mph, a difference in speed of only 0.5 mph. These results suggest that it is prudent to check planter performance at the chosen operating speed prior to establishing an entire block to ensure that seed spacing uniformity, not just the number of seeds per foot, is acceptable.
In short, the study showed that planter travel speed had a significant effect on seed spacing uniformity and difficult to thin, close spacings - the higher the speed, the poorer the performance.
You may be asking what is the reason for the phenomenon observed? A logical explanation is that seeds are traveling at the speed of the planter when they are released and tend to “bounce and roll” in the direction of travel when they hit the soil surface. Thus, the higher the travel speed, the further seeds bounce and roll resulting in increased seed spacing variability.
References
Siemens, M.C., & Gayler, R.R. (2016). Improving seed spacing uniformity of precision vegetable planters. Appl. Eng. Agric., 32(5), 579-587
Fig. 1. Seeding performance of a vacuum vegetable planter sowing lettuce when
operated at four travel speeds.
Fig. 2. Seeding performance of a belt vegetable planter sowing lettuce when operated at
four travel speeds
Teff grass (Eragrostis tef) is originally from Ethiopia and has gained a lot of interest in Arizona. This crop is planted between vegetables and grows under different conditions and soil types. It is a fast-growing crop and can be harvested multiple times. According to the Teff Grass Crop Overview and Forage Production Guide from 2007-09 in California it was cut an average of 4 times yielding 6.89 tons/acre. The palatability to livestock is good and some report that its preferred over other traditional grass hays1.
There is also a need for good weed control in Teff grass to satisfy buyers.
One herbicide that was tested for postemergence broadleaf weed control and crop safety is Simplicity (pyroxulam). A 24(c) Special Local Need Registration was extended for this product. Also, another product that is successfully used in our area for broadleaf weed control is Clarity (dicamba).
Teff is grown during the summer between other crops that could be susceptible to residue of herbicides, and it is important that any herbicide that is used doesn’t have long-term soil activity.
We conducted a trial last summer in the Yuma Valley to evaluate the crop safety of pyroxulam, dicamba and other herbicides. Our results for pyroxulam were consistent with the injury observed in the visual ratings obtained by B.J. Hinds-Cook, D.W. Curtis, A.G. Hulting and C.A. Mallory-Smith with a 10% recorded2.
Also, efficacy for the control Purslane (Portulaca oleracea) was evaluated. The following chart shows data obtained.
Results of pheromone and sticky trap catches can be viewed here.
Corn earworm: CEW moth counts remain at low levels in all areas, well below average for this time of year.
Beet armyworm: Trap increased areawide; above average compared to previous years.
Cabbage looper: Cabbage looper counts decreased in all areas; below average for this time of season.
Diamondback moth: DBM moth counts decreased in most areas. About average for this time of the year.
Whitefly: Adult movement beginning at low levels, average for early spring.
Thrips: Thrips adult counts reached their peak for the season. Above average compared with previous years.
Aphids: Aphid movement decreased in all areas; below average for late-March.
Leafminers: Adults remain low in most locations, below average for March.