I hope you are frolicking in the fields of wildflowers picking the prettiest bugs.
I was scheduled to interview for plant pathologist position at Yuma on October 18, 2019. Few weeks before that date, I emailed Dr. Palumbo asking about the agriculture system in Yuma and what will be expected of me. He sent me every information that one can think of, which at the time I thought oh how nice!
When I started the position here and saw how much he does and how much busy he stays, I was eternally grateful of the time he took to provide me all the information, especially to someone he did not know at all.
Fast forward to first month at my job someone told me that the community wants me to be the Palumbo of Plant Pathology and I remember thinking what a big thing to ask..
He was my next-door mentor, and I would stop by with questions all the time especially after passing of my predecessor Dr. Matheron. Dr. Palumbo was always there to answer any question, gave me that little boost I needed, a little courage to write that email I needed to write, a rigid answer to stand my ground if needed. And not to mention the plant diagnosis. When the submitted samples did not look like a pathogen, taking samples to his office where he would look for insects with his little handheld lenses was one of my favorite times.
I also got to work with him in couple of projects, and he would tell me “call me John”. Uhh no, that was never going to happen.. until my last interaction with him, I would fluster when I talked to him, I would get nervous to have one of my idols listening to ME? Most times, I would forget what I was going to ask but at the same time be incredibly flabbergasted by the fact that I get to work next to this legend of a man, and get his opinions about pest management. Though I really did not like giving talks after him, as honestly, I would have nothing to offer after he has talked. Every time he waved at me in a meeting, I would blush and keep smiling for minutes, and I always knew I will forever be a fangirl..
Until we meet again.
Vol. 12, Issue 7, Published 4/7/2021
Over the last several years, there has been a tremendous amount of research activity towards the development of autonomous agriculture vehicles. A quick internet search will reveal over 50 companies or university research groups working in this space. A question I get often from groups developing such platforms is “What is a good agricultural application for our lightweight “robot”?”. It’s a great question, and for Arizona vegetable production, it’s also one that I’m not sure I have a satisfying answer for.
The calls I get regarding autonomous robots are mostly related to automated weeding applications. Automated weeding machines are commercially available, but their adoption has been limited not because of labor costs for tractor operation, rather it is the lack of the development of a functional and cost-effective means for identifying and removing weeds.
For decades, researchers have been attempting to develop sensing systems that are able to reliably detect weeds. Techniques such as 2-D and 3-D color imaging, x-rays, hyperspectral sensing and artificial intelligence have been tried (Slaughter, 2014; Bender et al., 2020). The best performing systems provide about 96% accuracy, meaning that 4% of the crops plants are identified as weeds and would be destroyed by the weeder. For high value vegetable crops like lettuce with gross revenues of roughly $10,000 per acre, killing 4% of the crop equates to $400 per acre of losses. Economically, this does not make sense as hand weeding labor costs are typically $300 per acre or less. The other main issue is that current automated weeding technologies are not highly precise and provide only partial control. Our studies with these types of machines have shown that these systems remove only about 1/3rd of the in-row weeds (Lati, et al., 2016) and a follow up hand weeding operation is often necessary. To be highly cost effective, elimination of the hand weeding step is needed.
In short, my recommendation to research groups asking about applications for autonomous robots is that their time and technical skills would best be served developing reliable crop/weed differentiation systems and a technique to remove a very high percentage of weeds.
References
Bender, A., Whelan, B. & Sukkarieh, S. 2020. A high‐resolution, multimodal data set for agricultural robotics: A Ladybird's‐eye view of Brassica. J. Field Robotics. 37(1): 73-96.
Lati, R.N, Siemens, M.C., Rachuy, J.S. & Fennimore, S.A. (2016). Intrarow Weed Removal in Broccoli and Transplanted Lettuce with an Intelligent Cultivator. Weed Technology, 30(3), 655-663.
Slaughter, D.C. The biological engineer: Sensing the difference between crops and weeds. Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture 61(2008): 63-78.
When known weedy fields are ready to plant and labor is expected to be short, it is tempting to use all the preplant herbicides that are available. In lettuce, there are three preplant herbicides available and it is not uncommon to use 2 and occasionally all 3 on the same crop. All three of these herbicides use the same mode of action to kill weeds. There are slight differences between them but they all either stop or disrupt cell division in the roots and or stems of the weeds. They are normally safe to lettuce unless the crop is stressed or the rate, timing or placement are poor. The rationale for using multiple preplant herbicides in lettuce is often to broaden the weed control spectrum or guard against misses caused by misapplication or environmental conditions. There are some hazards, however, that sometimes outweigh the benefits. Potential crop injury is increased. All 3 use the same mode of action and the chance of injuring developing crop roots is compounded. Sometimes herbicides are added that contribute nothing but potential injury to the mix. If you look at the following chart you can see that many weeds are controlled by Kerb, for instance, that are not controlled by Balan or Prefar. Why add them? All three control grasses, goosefoot and purslane. If environmental conditions and applications are optimal it is often possible to use only one. Herbicides are much less expensive than labor, but it is possible to overdo it and cause more problems and expense.