trans1_small
University of Arizona
When autocomplete results are available use up and down arrows to review and enter to select.
  • Home
  • Pest Identification
    • Pest Identification Home
    • Diseases
    • Weeds
    • Insects
    • Pest Diagnostics
    • Pest Identification - Outputs
    • Events
    • Frequently Asked Questions
  • Agricultural IPM
    • Agricultural IPM Home
    • Vegetables
    • Field Crops
    • Other Crops
    • Agricultural Pesticide Safety
    • Agricultural IPM Outputs
    • Events
    • Frequently Asked Questions
  • IPM Assessment
    • IPM Assessment Home
    • Crop Pest Losses
    • Impacts
    • EPA Pesticide Registration Reviews
    • How To Submit Comments to EPA
    • Previously Submitted EPA Comments
    • Projects
    • IPM Assessment Outputs
    • Frequently Asked Questions
  • Community IPM
    • Community IPM Home
    • School IPM
    • Public Health IPM
    • Turfgrass
    • Community Pesticide Safety
    • Community Insect Gallery
    • Handbook on Pests
    • Home and School IPM Newsletters
    • Community IPM Resources
    • Events
    • Frequently Asked Questions
  • Pesticide Education and Training
    • Pesticide Education and Training Home
    • Ag Licensing Resources
    • Community Licensing Resources
    • Special Pesticide Registrations
    • Pesticide Safety Outputs
    • Events
    • Frequently Asked Questions
  • About Us
    • Partners and Links
    • Contact Us
    • Organizational Chart
    • Arizona Pest Management Center
    • Mission
    • Working Groups
    • Organization
    • Social Media
  • Home
  • Pest Identification
    • Pest Identification Home
    • Diseases
      • Publications And Resources
      • Photo Gallery
    • Weeds
      • Sample Submissions
      • Publications And Resources
      • Noxious Invasive Weeds
      • Weed Photo Gallery
      • Herbicide Injury
    • Insects
      • Sample Submissions
      • Publications And Resources
      • Insect Collection
      • Photo Gallery
      • Insect Injury
      • Community Insect Gallery
    • Pest Diagnostics
      • Herbicide Injury
      • Insect Injury
      • Publications And Resources
      • Photo Gallery
    • Pest Identification - Outputs
      • Presentations
      • Publications
      • Shorts
      • Medias
    • Events
    • Frequently Asked Questions
  • Agricultural IPM
    • Agricultural IPM Home
    • Vegetables
      • Lettuce
        • Crop Management
        • Soil Management
        • Irrigation
        • Varieties
        • Insects
        • Diseases
        • Weeds
      • Melons
        • Crop Management
        • Soil Management
        • Irrigation
        • Varieties
        • Insects
        • Diseases
        • Weeds
      • Cole Crops
        • Crop Management
        • Soil Management
        • Irrigation
        • Varieties
        • Insects
        • Diseases
        • Weeds
      • Spinach
        • Crop Management
        • Soil Management
        • Irrigation
        • Varieties
        • Insects
        • Diseases
        • Weeds
      • Vegetable Outputs
        • Presentations
        • Publications
      • VIPM Updates
      • VIPM Archive
      • Vegetable Video Archive
      • VIPM Update Cartoons
      • Events
    • Field Crops
      • Alfalfa
        • Crop Management
        • Soil Management
        • Irrigation
        • Varieties
        • Insects
        • Diseases
        • Weeds
        • Pesticide
      • Corn and Sorghum
        • Crop Management
        • Soil Management
        • Irrigation
        • Varieties
        • Insects
        • Diseases
        • Weeds
        • Pesticide
      • Cotton
        • Crop Management
        • Soil Management
        • Irrigation
        • Varieties
        • Insects
        • Diseases
        • Weeds
        • Pesticide
      • Guayule
        • Crop Management
        • Soil Management
        • Irrigation
        • Varieties
        • Insects
        • Diseases
        • Weeds
        • Pesticide
      • Small Grains
        • Crop Management
        • Soil Management
        • Irrigation
        • Varieties
        • Insects
        • Diseases
        • Weeds
        • Pesticide
      • Risk Reduction
      • Outputs
        • Publications
        • Presentations
        • Videos
      • Events
      • Field Crops IPM Shorts
    • Other Crops
      • Citrus
      • Tree and Nut Crops
      • Cross Commodity
    • Agricultural Pesticide Safety
    • Agricultural IPM Outputs
      • Presentations
      • Publications
      • Agricultural IPM Shorts
    • Events
    • Frequently Asked Questions
  • IPM Assessment
    • IPM Assessment Home
    • Crop Pest Losses
      • Cotton Pest Losses
      • Vegetable Pest Losses
    • Impacts
    • EPA Pesticide Registration Reviews
    • How To Submit Comments to EPA
    • Previously Submitted EPA Comments
    • Projects
      • Crop Pest Losses
    • IPM Assessment Outputs
      • Presentations
      • Publications
      • Shorts
    • Frequently Asked Questions
  • Community IPM
    • Community IPM Home
    • School IPM
      • Stop School Pests
      • IPM for Sensitive Sites in the Built Environment
    • Public Health IPM
      • Arizona Conenose Bugs
      • Bed Bugs
      • Bees
      • Body Lice
      • False Chinch Bugs
      • Fire Ants
      • Head Lice
      • Longhorned Tick
      • Mosquitoes
      • Scorpions
      • EPA Border 2020
    • Turfgrass
      • Pre-emergence Weed Control - Lawns
      • History of the Lawn and Turfgrass
      • Nitrogen and Iron Deficiencies
      • Publications and Resources
    • Community Pesticide Safety
      • Presentations
      • Publications
    • Community Insect Gallery
    • Handbook on Pests
    • Home and School IPM Newsletters
    • Community IPM Resources
    • Events
      • 2021 Emergency Preparedness Workshop
      • 2022 Emergency Preparedness Workshop
    • Frequently Asked Questions
  • Pesticide Education and Training
    • Pesticide Education and Training Home
    • Ag Licensing Resources
    • Community Licensing Resources
    • Special Pesticide Registrations
    • Pesticide Safety Outputs
      • Presentations
      • Publications
      • Pesticide Safety Shorts
    • Events
    • Frequently Asked Questions
  • About Us
    • Partners and Links
    • Contact Us
    • Organizational Chart
    • Arizona Pest Management Center
    • Mission
    • Working Groups
    • Organization
    • Social Media
  1. Agricultural IPM
  2. Vegetables
  3. VIPM Archive
  4. VIPM Plant View
Plant Diagnostics
Sep 18, 2024
2023-2024 Sclerotinia Drop of Lettuce Fungicide Trial

Bindu Poudel-Ward, Martin Porchas Sr., Martin Porchas Jr., and  Neeraja Singh 
Yuma County Cooperative Extension, University of Arizona, Yuma, AZ

This study was conducted at the Yuma Valley Agricultural Center. The soil was a silty clay loam (7-56-37 sand-silt-clay, pH 7.2, O.M. 0.7%). Lettuce was seeded, then sprinkler-irrigated to germinate seed on Nov 28, 2023 on double rows 12 in. apart on beds with 42 in. between bed centers.  All other water was supplied by furrow irrigation or rainfall. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of 25 ft of bed, which contained two 25 ft. rows of lettuce. Plants were thinned Jan 17, 2024  at the 3-4 leaf stage to a 12-inch spacing. Treatment beds were separated by single nontreated beds. Treatments were applied with a tractor-mounted boom sprayer that delivered 50 gal/acre at 100 psi to flat-fan nozzles spaced 12 in apart.
 

Month

Max Temp (°F)

Min Temp (°F)

Average Temp (°F)

Rainfall

November

80

51

65

0.08 in

December

71

44

57

0.82 in

January

68

42

54

1.14 in

February

73

47

59

0.50 in

 
Sclerotia of Sclerotinia minor were produced in 0.25 pt glass flasks containing 15 to 20 sterilized 0.5 in. cubes of potato by seeding the potato tissue with mycelia of the fungus. After incubation for 4 to 6 wk at 68°F, mature sclerotia were separated from residual potato tissue by washing the contents of each flask in running tap water within a soil sieve. Sclerotia were air-dried at room temperature, then stored at 40°F until needed. Inoculum of Sclerotinia sclerotiorum was produced in 2 qt glass containers by seeding moist sterilized barley seeds with mycelia of the pathogen.  After 2 months incubation at 68°F, abundant sclerotia were formed. The contents of each container were then removed, spread onto a clean surface and air-dried. The resultant mixture of sclerotia and infested barley seed was used as inoculum. Lettuce ‘Magosa’ was seeded and then sprinkler-irrigation was initiated to germinate seed in double rows 12 inches apart on beds with 42 inches between bed centers.  Plants were thinned Jan 17, 2024 at the 3-4 leaf stage to a 12-inch spacing. For plots infested with Sclerotinia minor, 0.13 oz (3.6 grams) of sclerotia were distributed evenly on the surface of each 25-ft-long plot between the rows of lettuce and incorporated into the top 1 inch of soil. For plots infested with Sclerotinia sclerotiorum, 0.5 pint of a dried mixture of sclerotia and infested barley grain was broadcast evenly over the surface of each 25-ft-long lettuce plot, again between the rows of lettuce on each bed, and incorporated into the top 1-inch of soil. Treatment beds were separated by single nontreated beds. Treatments were replicated five times in a randomized complete block design. Each replicate plot consisted of a 25 ft length of bed, which contained two 25 ft rows of lettuce. Control plots received sclerotia but were not treated with any fungicide. 

            For treatments first applied at seeding, sclerotia were introduced into plots before the first application of treatments. The first application for at seeding treatments was made on Nov 28, with an additional application on January 17, 2024. Some treatments had second application on  Jan 30, 2024 (See table). For treatments first applied after thinning, sclerotia were introduced into plots after thinning before the first application of these treatments, with additional applications as noted in the data sheets. An initial sprinkler irrigation supplied water for seed germination, with subsequent furrow irrigations for crop growth. First sign of disease was observed on January 29, 2024. The final severity of disease was determined at plant maturity by recording the number of dead and dying plants in each plot due to Sclerotinia minor or Sclerotinia sclerotiorum (March 5, 2024).  As a point of reference, the original stand of lettuce was thinned to about 65 plants per plot.

In nontreated plots, about 32%  of lettuce plants were dead or dying due to infection with Sclerotinia sclerotiorum and  about 24 %  due to S. minor, at the end of the trial.  Please refer to the data tables to compare treatments of interest, using the Least Significant Difference Value listed at the bottom of each table to determine statistically significant differences among treatments. Miravis Prime, Luna Sensation and Elisys  gave the best results against Sclerotinia minor. Luna Sensation, Miravis Prime and Fontellis gave the best control against S. sclerotiorum (see table). From the list of treatments applied at seeding, Endura fb Merivon gave the best control against both species of Sclerotinia (see table). 
Phytotoxicity was not observed in any of the treatments in this trial. 

02_VIPM_Sep_18_2024
03_VIPM_Sep_18_2024

To contact Bindu Poudel go to: bpoudel@email.arizona.edu
APMC Logo BW Inverted
CALS Logo Black and white Inverted
ARIZONA PEST MANAGEMENT CENTER
University of Arizona
College of Agriculture and Life Sciences
Maricopa Agricultural Center

37860 W. Smith-Enke Road
Maricopa, AZ 85239
FULL CONTACT
LIST
facebook
twitter


© Arizona Board of Regents

University Privacy Statement